Standard problem exercise SPE - 3

Performance of pre-stressed concrete containment vessel under severe accidents

Part – I: Structural Analysis

AERB, India
• Introduction
 – Objective
 – Scope

• Phase-1 analysis
 – Model-1
 – Model-2
 – Model-3

• Phase-2 analysis: Case - 1

• Summary
Objective

- Improve knowledge in the areas of:
 - Local containment behaviour under beyond design basis pressures
 - Characterization of leakage behaviour as a function of pressure and temperature
 - Probabilistic aspects of containment response.
• Assessment of the ultimate load capacity of a Prestressed Concrete Containment Vessel (PCCV) structure.

• Principally based on the data of 1:4 scale model containment tests carried out at Sandia National Laboratories (SNL) in 2000-2001

• The SPE consists of two phases
Phase – 1:

- Examination of local effects which were observed to require more study in the previous round robin analyses

 - Effects of containment dilation on prestressing force
 - Slippage of prestressing cables
 - Steel-concrete interface
 - Failure mechanisms
 - Use of nominal versus in-situ conditions
Phase – 2

- Examination of methods to estimate leakage rate as a function of pressure
- Evaluation of the methods relative to the PCCV test results
- Enumeration of methods for predicting leakage of PCCV as function of pressure and temperature
- Application of these methods to characterize performance, in terms of leakage rate, under pressure and temperature
- Transition of performance to probabilistic space
• Model – 1: Tendon behavior model
 – Study tendon forces as a function of containment dilation
 • Change of tendon stress distribution from the classical angular friction design assumption to an approximately uniform distribution
 – Slippage of pre-stressing cables
 • Allow change in position of the tendon relative to the concrete after initial pre-stress to simulate tendon behaviour during over-pressurization
• Model – 2: Local model of equipment hatch
 – Ovalizations of concrete versus steel
 • Study the displacement and leakage that can be caused by this
 – Slippage between the liner and the concrete
 • Influence on tearing and leakage
 – Failure mechanisms
 • Predict tears in the liner from the FE model strains
• Model – 3: Global analysis model
 – Incorporate lessons from model 1 & 2
 – Provide PCCV response at all locations
 – Provide liner strain mapping
 – Response data versus pressure for the “55 standard output locations”
- Finite element model developed in ABAQUS
- Analysis of model – 1 had to be discontinued due to
 - Issues related to convergence
 - Memory & hardware limitations
- Planned to be taken up further in future
• Modeling
 – Rebars as sub-elements of concrete wall
 • Smeared layer
 – Individual stirrups as 2-node truss elements
 – Horizontal and vertical cables using truss elements
 • Average initial stresses of 800 MPa in horizontal
 • Average initial stresses of 1200 MPa in vertical
• Boundary conditions

 – Symmetric boundary conditions applied to two vertical surfaces.

 – Bottom surface kept vertically restrained.

 – Two horizontal rotations at the top surface are restrained

 – Top surface allowed to slide vertically as plane surface by applying constraint equation
• Loading & analysis
 – Pre-stress applied and model allowed to reach equilibrium
 – Internal pressure and meridional pull at top surface
 • Pull is a function of internal pressure
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model – 2a (Integral connection)</th>
<th>Model – 2b (Friction contact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate capacity</td>
<td>3.44 Pd</td>
<td>3.05 Pd (Convergence issues)</td>
</tr>
<tr>
<td>Concrete hoop cracking</td>
<td>1.64 Pd at 0° Azimuth</td>
<td>1.626 Pd at 0° Azimuth</td>
</tr>
<tr>
<td>Tendon strain</td>
<td>0.312% at ultimate pressure near 0° Azimuth</td>
<td>0.302% at ultimate pressure near 18° Azimuth</td>
</tr>
</tbody>
</table>
Model - 2

Liner deformation contour - ultimate capacity

Model 2a

Liner strain contour - ultimate capacity

Model 2b
Modeling

- layered shell element with two layers
 - Layer – 1: Liner; Layer – 2: Concrete
 - Reinforcement and pre-stressing cables as embedded oriented surfaces within concrete layer
 - Uniformly distributed smeared surface
 - Thickness is the ratio of rebar area to spacing
 - Only equipment hatch and airlock openings are included in the model
• Material non-linear behavior

 – Concrete: Damage plasticity model
 • Bond slip and dowel action modelled by tension stiffening in concrete model

 – Rebars & cables: Metal plasticity model

 – Liner: Metal plasticity model
• Analysis: Two steps

 – Step – 1: Pre-stress (Average uniform value)

 • Hoop cable 840 MPa

 • Hairpin: Cylinder & dome till buttress 1250 MPa

 • Hairpin: Dome above buttress 1000 MPa

 – Step – 2: Internal pressure
Deformed shape

1.0 x Pd

3.0 x Pd

3.65 x Pd
Stress in prestress tendon – 3.65 Pd
Phase - 2 Analysis
Model calibration

- Confirm adequacy of mesh refinement

- Check performance w.r.t test results

- Results compared with two other models
 - Model refined near openings
 - Local detailed (3D) model near E/H
Model – calibration: Refinement near openings
Model – calibration: Local model near E/H

- Wall using 8 node solid elements
 - Concrete damage plasticity model for inelastic behavior
- Liner and pipe sleeve using 4 node shell element
 - Metal plasticity model to simulate inelastic behavior
Model calibration: Stress in tendon: $3.65 P_d$

Comparison of refined & unrefined models

Hoop

Hair Pin
Model calibration

- No difference in response of the global models with and without refinement near openings
 - Confirms adequacy of mesh refinement near openings
 - global mesh itself very fine, 0.2m x 0.2m

- Estimated PCCV ultimate capacity and liner damage locations match closely with global and local models

- Hence global model of phase-1 (model-3) used for phase-2 studies also
Case - 1 analysis
Calibrated Model-3 from phase-1

Modification to include temperature loading
- Number of layers changed from 2 to 4
 - Layer 1: Liner (9 integration points)
 - Layer 2 to 4: Concrete (9 integrations points each)

Modified model designated as model-4
Temperature & pressure variation

- As per problem statement
 - Stress free temperature = 25°C

- Temperature loading regions

- Temperature variation across thickness
Failure prediction criteria

- PCCV model is considered to have reached its ultimate structural failure capacity when

 - Yielding of following occur in any location in the structure

 - Reinforcing steel in both directions

 - Pre-stressing steel in both directions
Case-1 results: Deformed shape
Case-1 results: Deformed shape

3.74 Pd

3.46 Pd
Output at 55 standard output locations

- Output provided for 52 out of 55 locations
 - Output at base liner (loc 47) not provided
 - as the base liner is not modelled.
 - Output at anchorage loc. 54, 55 not provided
 - Pre-stressing tendons are modelled as smeared layer.

- Rebar strains: Generally provided for the outer layer.

- Liner strain: Integration point at inner surface of PCCV.

- Radial displ. at the centre of E/H and A/L:
 Mean of displ. at 4 nodes on the edge of E/H & A/L.
Displacement in general area

Vertical displacement: Location - 11

Dome crown

Cylinder general area

Radial displacement: Location - 4
Displacement at openings

Radial displacement: Location – 14

Radial displacement: Location – 15

A/L opening

E/H opening
Reinforcement strains
Liner strains
Liner strain contours

Hoop strain
After prestress
Liner strain contours

Hoop strain
Initial temperature
Liner strain contours - Hoop
Liner strain contours - meridional
Liner strain contours

Hoop

Meridional

3.46 Pd
Liner strain contours

3.74 Pd
Tendon stress profile

- Tendons not modeled individually
- Stress at tendon layer at the level of specified tendon
- Path for each tendon
Tendon stress profile

Tendon stress profile for H-35 cable

Tendon stress profile for H-68 cable
Tendon stress profile

Tendon stress profile for V-37 cable

- Tendon stress profile (N/sq.m)
- Azimuth (degrees)

Legend:
- 0–Pd
- 0–Pd(temp)
- 1.0–Pd
- 1.5–Pd
- 2.0–Pd
- 2.5–Pd
- 3.0–Pd
- 3.3–Pd
- 3.4–Pd
- 3.46–Pd
Ultimate capacity: $3.46 \, P_d$

Stress in reinforcement layers

- **Hoop - In**
- **Hoop - Out**
- **Mer - In**
- **Mer - Out**
Ultimate capacity: 3.46 P_d

Stress in prestress tendon layers

3.46 Pd
Stress in prestress tendon layers

Stress in prestress tendon layers

3.74 Pd
• Comparison of results with phase – 1
 – Ultimate capacity
 • Phase – 1: 3.65 x P_d
 • Case - 1: 3.46 x P_d
 – Displacement at center of E/H & A/L
 – Strain in rebar location – 31
Displacement at center of E/H & A/L
Comparison of Phase-1 & Phase2-case1
• Temperature has a significant effect on strains and displacement

• The compression provided by the pre-stress is compensated by temperature at early loading stage.