Multicrystalline Si (mc-Si) cells have not benefited from the cost-effective wet-chemical texturing processes that reduce front surface reflectance on single-crystal wafers. We developed a maskless plasma texturing technique for mc-Si cells using Reactive Ion Etching (RIE) that results in much higher cell performance than that of standard untextured cells. Elimination of plasma damage has been achieved while reducing front reflectance to extremely low levels. Internal quantum efficiencies higher than those on planar and wet-textured cells have been obtained, boosting cell currents and efficiencies by up to 11% on monocrystalline Si and 2.5% on multicrystalline Si cells.
A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.
Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2×) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films.
The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.
QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.
A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.
This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.
This paper is an overview of the wafer and reticle positioning system of the Extreme Ultraviolet Lithography (EUVL) Engineering Test Stand (ETS). EUVL represents one of the most promising technologies for supporting the integrated circuit (IC) industry's lithography needs for critical features below 100 nm. EUVL research and development includes development of capabilities for demonstrating key EUV technologies. The ETS is under development at the EUV Virtual National Laboratory, to demonstrate EUV full-field imaging and provide data that supports production-tool development. The stages and their associated metrology operate in a vacuum environment and must meet stringent outgassing specifications. A tight tolerance is placed on the stage tracking performance to minimize image distortion and provide high position repeatability. The wafer must track the reticle with less than ±3 nm of position error and jitter must not exceed 10 nm rms. To meet these performance requirements, magnetically levitated positioning stages utilizing a system of sophisticated control electronics will be used. System modeling and experimentation have contributed to the development of the positioning system and results indicate that desired ETS performance is achievable.
The need to register data is abundant in applications such as: world modeling, part inspection and manufacturing, object recognition, pose estimation, robotic navigation, and reverse engineering. Registration occurs by aligning the regions that are common to multiple images. The largest difficulty in performing this registration is dealing with outliers and local minima while remaining efficient. A commonly used technique, iterative closest point, is efficient but is unable to deal with outliers or avoid local minima. Another commonly used optimization algorithm, simulated annealing, is effective at dealing with local minima but is very slow. Therefore, the algorithm developed in this paper is a hybrid algorithm that combines the speed of iterative closest point with the robustness of simulated annealing. Additionally, a robust error function is incorporated to deal with outliers. This algorithm is incorporated into a complete modeling system that inputs two sets of range data, registers the sets, and outputs a composite model.
Laser Engineered Net Shaping (LENS) is a novel manufacturing process for fabricating metal parts directly from Computer Aided Design (CAD) solid models. The process is similar to rapid prototyping technologies in its approach to fabricate a solid component by layer additive methods. However, the LENS technology is unique in that fully dense metal components with material properties similar to wrought materials can be fabricated. The LENS process has the potential to dramatically reduce the time and cost required realizing functional metal parts. In addition, the process can fabricate complex internal features not possible using existing manufacturing processes. The real promise of the technology is the potential to manipulate the material fabrication and properties through precision deposition of the material, which includes thermal behavior control, layered or graded deposition of multi-materials, and process parameter selection.
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Frueh, C.; Poirier, D.R.; Felicelli, S.D.
Using a finite-element simulator, a directionally solidified hypoeutectic Pb-Sn alloy was modeled in two dimensions to determine the effect of the height of the overlying liquid on convective transport and macrosegregation. It was determined that, while the strength of the convection in the overlying liquid depends on the square root of its height, one need not model the entire domain to predict freckling. Furthermore, the assumption of a constant thermal gradient in the liquid causes the predicted convection to be somewhat weaker than the convection in the temperature field used in directional solidification processing.
Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, we will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF6, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleans prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.
Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.
Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.
Proceedings of the XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Association, 'Ergonomics for the New Millennium'
Despite extensive safety analysis and application of safety measures, there is a frequent lament, "Why do we continue to have accidents?" Two breakdowns are prevalent in risk management and prevention. First, accidents result from human actions that engineers, analysts and management never envisioned and second, controls, intended to preclude/mitigate accident sequences, prove inadequate. This paper addresses the first breakdown, the inability to anticipate scenarios involving human action/inaction. The failure of controls has been addressed in a previous publication (Forsythe and Grose, 1998). Specifically, this paper presents an approach referred to as "surety." The objective of this approach is to provide high levels of assurance in situations where potential system failure paths cannot be fully characterized. With regard to human elements of complex systems, traditional approaches to human reliability are not sufficient to attain surety. Consequently, an Organic Model has been developed to account for the organic properties exhibited by engineered systems that result from human involvement in those systems.
A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log timescale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson method used to find the incremental displacements in each time step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping or buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap through examples are presented here. In some cases, viscoelastic results are also obtained using the quasi-elastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.
The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194).
The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191, and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996, the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP's compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.
The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic waste. The construction of complementary cumulative distribution functions (CCDFs) for total radionuclide release from the WIPP to the accessible environment is described. The resultant CCDFs (i) combine releases due to cuttings and cavings, spallings, direct brine release, and long-term transport in flowing groundwater; (ii) fall substantially to the left of the boundary line specified by the US Environmental Protection Agency's (EPA's) standard 40 CFR 191 for the geologic disposal of radioactive waste; and (iii) constitute an important component of the DOE's successful Compliance Certification Application to the EPA for the WIPP. Insights and perspectives gained in the performance assessment (PA) that led to these CCDFs are described, including the importance of: (i) an iterative approach to PA; (ii) uncertainty and sensitivity analysis; (iii) a clear conceptual model for the analysis; (iv) the separation of stochastic (i.e. aleatory) and subjective (i.e. epistemic) uncertainty; (v) quality assurance procedures; (vi) early involvement of peer reviewers, regulators, and stakeholders; (vii) avoidance of conservative assumptions; and (viii) adequate documentation.
We explore the use of variational grid-generation to perform alignment of a grid with a given vector field. Variational methods have proven to be a powerful class of grid-generators, but when they are used in alignment, difficulties may arise in treating boundaries due to an incompatibility between geometry and vector field. In this paper, a refinement of the procedure of iterating boundary values is presented. It allows one to control the quality of the grid in the face of the above-mentioned incompatibility. This procedure may be incorporated into any variational alignment algorithm. We demonstrate its use with respect to a new quasi-variational alignment method having a particularly simple structure. The latter method is comparable to Knupp's method (see [1]), but avoids use of the Winslow equations.
An overview is given on the current status of three-dimensional (3D) photonic crystals. The realization of new 3d photonic crystal structures, the creation of high Q microcavities and the building of waveguide bends are presented. These devices form the basic building blocks for applications in signal processing and low threshold lasers.
Dispersion of solutes in a variable aperture fracture results from a combination of molecular diffusion and velocity variations in both the plane of the fracture (macrodispersion) and across the fracture aperture (Taylor dispersion). We use a combination of physical experiments and computational simulations to test a theoretical model in which the effective longitudinal dispersion coefficient D(L) is expressed as a sum of the contributions of these three dispersive mechanisms. The combined influence of Taylor dispersion and macrodispersion results in a nonlinear dependence of D(L) on the Peclet number (Pe = V/D(m), where V is the mean solute velocity,is the mean aperture, and D(m) is the molecular diffusion coefficient). Three distinct dispersion regimes become evident: For small Pe (Pe << 1), molecular diffusion dominates resulting in D(L) proportional to Pe0; for intermediate Pe, macrodispersion dominates (D(L) proportional to Pe); and for large Pe, Taylor dispersion dominates (D(L) proportional to Pe2). The Pe range corresponding to these different regimes is controlled by the statistics of the aperture field. In particular, the upper limit of Pe corresponding to the macrodispersion regime increases as the macrodispersivity increases. Physical experiments in an analog, rough-walled fracture confirm the nonlinear Pe dependence of D(L) predicted by the theoretical model. However, the theoretical model underestimates the magnitude of D(L). Computational simulations, using a particle-tracking algorithm that incorporates all three dispersive mechanisms, agree very closely with the theoretical model predictions. The close agreement between the theoretical model and computational simulations is largely because, in both cases, the Reynolds equation describes the flow field in the fracture. The discrepancy between theoretical model predictions and D(L) estimated from the physical experiments appears to be largely, due to deviations from the local cubic law assumed by the Reynolds equation.
Transuranic (TRU) waste generated by the handling of plutonium during research on or production of U.S. nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m3 of TRU waste, corresponding to 168,485 m3 of contact-handled (CH-) TRU waste and 7079 m3 of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e. legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, which is the closure time for the repository. These wastes were produced at 27 U.S. Department of Energy (DOE) siles in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by the Sandia National Laboratories/New Mexico (SNL/NM).
The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releaes for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided.