Publications

Results 80901–80925 of 80,958
Skip to search filters

RATDAMPER- A simple numerical procedure for coupling mechanical and hydrological properties within the disturbed rock zone at the waste isolation pilot plant

4th North American Rock Mechanics Symposium, NARMS 2000

Rath, J.S.; Pfeifle, T.W.; Hunsche, H.

A simple numerical procedure for predicting damage and permeability in the disturbed rock zone (DRZ) is given. The empirical procedure predicts damage based on a function of stress tensor invariants. For a wttte class of problems hydro logic/mechanical coupling is necessary for proper analysis. The RATDAMPER procedure incorporates dilatant volumetric strain and permeability. It has been implemented in a weakly coupled code, which combines a finite element structural code and a finite difference multi-phase fluid flow code. Using the development of inelastic volumetric strain, a value of permeability can be assigned. This flexibility allows empirical permeability functional relationships to be evaluated.

More Details

On the Automatic Generation of Plans for Life Cycle Assembly Processes

Galpin, Terri L.

Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies of life cycle assembly processes that give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, optimize, and analyze the cycle assembly processes. The study of assembly planning is at the very heart of manufacturing research facilities and academic engineering institutions; and, in recent years a number of significant advances in the field of assembly planning have been made. These advances have ranged from the development of automated assembly planning systems, such as Sandia's Automated Assembly Analysis System Archimedes 3.0{copyright}, to the startling revolution in microprocessors and computer-controlled production tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), flexible manufacturing systems (EMS), and computer-integrated manufacturing (CIM). These results have kindled considerable interest in the study of algorithms for life cycle related assembly processes and have blossomed into a field of intense interest. The intent of this manuscript is to bring together the fundamental results in this area, so that the unifying principles and underlying concepts of algorithm design may more easily be implemented in practice.

More Details

Human Assisted Assembly Processes

Galpin, Terri L.; Peters, Ralph R.

Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative automation has shown the effectiveness of humans and machines directly interacting to perform tasks. To continue to advance this area of robotics, effective means need to be developed to allow natural ways for people to communicate and cooperate with robots just as they do with one another.

More Details

Laser assisted arc welding for aluminum alloys

Fuerschbach, Phillip W.

Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

More Details

Fundamental mechanisms of micromachine reliability

De Boer, Maarten P.; Sniegowski, Jeffry J.; Knapp, J.A.; Redmond, James M.; Michalske, Terry A.; Mayer, Thomas K.

Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of RH up to a threshold value, depending on the coating chemistry. The mechanism for the adhesion increase beyond this threshold value is that the coupling agent reconfigures from a surface to a bulk phase (Chapter 3). To investigate the details of how the adhesion increase occurs, the authors developed the mechanics for adhesion hysteresis measurements. These revealed that near-crack tip compression is the underlying cause of the adhesion increase (Chapter 4). A vacuum deposition chamber for silane coupling agent deposition was constructed. Results indicate that vapor deposited coatings are less susceptible to degradation at high RH (Chapter 5). To address issues relating to surfaces in relative motion, a new test structure to measure friction was developed. In contrast to other surface micromachined friction test structures, uniform apparent pressure is applied in the frictional contact zone (Chapter 6). The test structure will enable friction studies over a large pressure and dynamic range. In this LDRD project, the authors established an infrastructure for MEMS adhesion and friction metrology. They then characterized in detail the performance of hydrophilic and hydrophobic films under humid conditions, and determined mechanisms which limit this performance. These studies contribute to a fundamental understanding for MEMS reliability design rules. They also provide valuable data for MEMS packaging requirements.

More Details

Forensic imaging tools for law enforcement

Smithpeter, Colin L.; Sandison, David R.; Vargo, Timothy D.

Conventional methods of gathering forensic evidence at crime scenes are encumbered by difficulties that limit local law enforcement efforts to apprehend offenders and bring them to justice. Working with a local law-enforcement agency, Sandia National Laboratories has developed a prototype multispectral imaging system that can speed up the investigative search task and provide additional and more accurate evidence. The system, called the Criminalistics Light-imaging Unit (CLU), has demonstrated the capabilities of locating fluorescing evidence at crime scenes under normal lighting conditions and of imaging other types of evidence, such as untreated fingerprints, by direct white-light reflectance. CLU employs state of the art technology that provides for viewing and recording of the entire search process on videotape. This report describes the work performed by Sandia to design, build, evaluate, and commercialize CLU.

More Details

Z-Pinch Fusion for Energy Applications

Spielman, Rick B.

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

More Details

Ab-initio studies of ALSB (001) adatom behavior and reconstruction

Materials Research Society Symposium - Proceedings

Modine, N.A.; Kim, Hanchul; Kaxiras, E.

We discuss a recent investigation of adatom behavior on the AlSb(001) surface using first-principles electronic structure methods based on the density functional theory. For Al and Sb adatoms, we find a number of novel adatom structures that differ dramatically from previous results for the superficially similar group-III arsenides. In particular, we conclude that it is energetically favorable for an Al adatom to incorporate substitutionally into the outermost layer of the AlSb surface. This observation helps motivate a proposed new reconstruction for the AlSb(001) surface. Finally, we argue that the unusual adatom behavior identified for this surface probably results from the presence of a dimer row composed of a double layer of group-V atoms in the reconstruction, and therefore, it should be generic to all of the antimonides, as well as, the c(4 × 4) reconstruction of the arsenides and phosphides.

More Details

Ballistic Missile Silo Door Monitoring Analysis

Edenburn, Michael W.; Trost, Lawrence C.

This paper compares the cost and effectiveness of several potential options that may be used to monitor silo-based ballistic missiles. Silo door monitoring can be used to verify that warheads removed to deactivate or download silo-based ballistic missiles have not been replaced. A precedent for monitoring warhead replacement using reentry vehicle on site inspections (RV-OSIs) and using satellites has been established by START-I and START-II. However, other monitoring options have the potential to be less expensive and more effective. Three options are the most promising if high verification confidence is desired: random monitoring using door sensors; random monitoring using manned or unmanned aircraft; and continuous remote monitoring using unattended door sensors.

More Details

Composite wire plasma formation and evolution

Spielman, Rick B.

The detailed understanding of the formation and evolution of plasma from rapidly heated metallic wires is a long-standing challenge in the field of plasma physics and in exploding wire engineering. This physical process is made even more complicated if the wire material is composed of a number of individual layers. The authors have successfully developed both optical and x-ray backlighting diagnostics. In particular, the x-ray backlighting technique has demonstrated the capability for quantitative determination of the plasma density over a wide range of densities. This diagnostic capability shows that the process of plasma formation is composed of two separate phases: first, current is passed through a cold wire and the wire is heated ohmically, and, second, the heated wire evolves gases that break down and forms a low-density plasma surrounding the wire.

More Details

Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

Parma, Edward J.

Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

More Details

Bio-Terrorism Threat and Casualty Prevention

Noel, William P.

The bio-terrorism threat has become the ''poor man's'' nuclear weapon. The ease of manufacture and dissemination has allowed an organization with only rudimentary skills and equipment to pose a significant threat with high consequences. This report will analyze some of the most likely agents that would be used, the ease of manufacture, the ease of dissemination and what characteristics of the public health response that are particularly important to the successful characterization of a high consequence event to prevent excessive causalities.

More Details

Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operation

INTELEC, International Telecommunications Energy Conference (Proceedings)

Szymborski, Joseph; Hunt, George; Tsagalis, Angelo; Jungst, Rudolph G.

Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of Internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAs to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide 'off-line' charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is mantained even when the battery is operated at a partial state-of-charge for long periods of time.

More Details

LDRD final report backside localization of open and shorted IC interconnections LDRD Project (FY98 and FY 99)

Cole, Edward I.; Tangyunyong, Paiboon T.; Barton, Daniel L.

Two new failure analysis techniques have been developed for backside and front side localization of open and shorted interconnections on ICs. These scanning optical microscopy techniques take advantage of the interactions between IC defects and localized heating using a focused infrared laser ({lambda} = 1,340 nm). Images are produced by monitoring the voltage changes across a constant current supply used to power the IC as the laser beam is scanned across the sample. The methods utilize the Seebeck Effect to localize open interconnections and Thermally-Induced Voltage Alteration (TIVA) to detect shorts. Initial investigations demonstrated the feasibility of TIVA and Seebeck Effect Imaging (SEI). Subsequent improvements have greatly increased the sensitivity of the TIVA/SEI system, reducing the acquisition times by more than 20X and localizing previously unobserved defects. The interaction physics describing the signal generation process and several examples demonstrating the localization of opens and shorts are described. Operational guidelines and limitations are also discussed. The system improvements, non-linear response of IC defects to heating, modeling of laser heating and examples using the improved system for failure analysis are presented.

More Details

Molecular-To-Continuum Fracture Analysis of Thermosetting Polymer/Solid Interfaces

Kent, Michael S.; Reedy, Earl D.; Stevens, Mark J.

This report focuses on the relationship between the fundamental interactions acting across an interface and macroscopic engineering observable such as fracture toughness or fracture stress. The work encompasses experiment, theory, and simulation. The model experimental system is epoxy on polished silicon. The interfacial interactions between the substrate and the adhesive are varied continuously using self-assembling monolayer. Fracture is studied in two specimen geometries: a napkin-ring torsion geometry and a double cantilevered beam specimen. Analysis and modeling involves molecular dynamics simulations and continuum mechanics calculations. Further insight is gained from analysis of measurements in the literature of direct force measurements for various fundamental interactions. In the napkin-ring test, the data indicate a nonlinear relationship between interface strength and fracture stress. In particular, there is an abrupt transition in fracture stress which corresponds to an adhesive-to-cohesive transition. Such nonlinearity is not present in the MD simulations on the tens-of-nanometer scale, which suggests that the nonlinearity comes from bulk material deformation occurring on much larger length scales. We postulate that the transition occurs when the interface strength becomes comparable to the yield stress of the material. This postulate is supported by variation observed in the fracture stress curve with test temperature. Detailed modeling of the stress within the sample has not yet been attempted. In the DCB test, the relationship between interface strength and fracture toughness is also nonlinear, but the fracture mechanisms are quite different. The fracture does not transition from adhesive to cohesive, but remains adhesive over the entire range of interface strength. This specimen is modeled quantitatively by combining (i) continuum calculations relating fracture toughness to the stress at 90 {angstrom} from the crack tip, and (ii) a relationship from molecular simulations between fracture stress on a {approx} 90 {angstrom} scale and the fraction of surface sites which chemically bond. The resulting relationship between G{sub c} and fraction of bonding sites is then compared to the experimental data. This first order model captures the nonlinearity in the experimentally-determined relationship. A much more extensive comparison is needed (calculations extending to higher G{sub c} values, experimental data extending to lower G{sub c} values) to guide further model development.

More Details

Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve

Microporous and Mesoporous Materials

Nyman, M.; Gu, B.X.; Wang, L.M.; Ewing, R.C.; Nenoff, T.M.

Ongoing hydrothermal Cs-Ti-Si-O-H2O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs3TiSi3O9.5 · 3H2O SNL-B is only the second molecular sieve, Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 μm2) with a blade-like morphology. SNL-B is confirmed to be a three-dimensional molecular sieve by a variety of characterization techniques (N2 adsorption, ion exchange, water adsorption/desorption, solid state cross polarization-magic angle spinning nuclear magnetic resonance). SNL-B is able to desorb and adsorb water from its pores while retaining its crystal structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, 29Si and 133Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H2O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs2TiSi6O15 (SNL-A). (C) 2000 Elsevier Science B.V. All rights reserved. Ongoing hydrothermal Cs-Ti-Si-O-H2O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs3TiSi3O9.5·3H2O. SNL-B is only the second molecular sieve, Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1×2 μm2) with a blade-like morphology. SNL-B is confirmed to be a three-dimensional molecular sieve by a variety of characterization techniques (N2 adsorption, ion exchange, water adsorption/desorption, solid state cross polarization-magic angle spinning nuclear magnetic resonance). SNL-B is able to desorb and adsorb water from its pores while retaining its crystal structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, 29Si and 133Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H2O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs2TiSi6O15 (SNL-A).

More Details

The effect of surface contamination on adhesive forces as measured by contact mechanics

Materials Research Society Symposium - Proceedings

Emerson, John A.; Giunta, Rachel K.; Miller, Gregory V.; Sorensen, Christopher R.; Pearson, Raymond A.

The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to mate the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces were coated with hexadecane as a controlled contaminant. The force required to pull an elastomeric hemisphere from a surface was determined by contact mechanics, via the JKR model, using a model siloxane network for the elastomeric contact sphere. Due to the dispersive nature of the elastomer surface, larger forces were required to pull the sphere from a contaminated surface than a clean aluminum oxide surface.

More Details

Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

Dwyer, Brian P.

Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.

More Details

Advanced numerical methods and software approaches for semiconductor device simulation

VLSI Design

Carey, Graham F.; Pardhanani, A.L.; Bova, S.W.

In this article we concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of `upwind' and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), `entropy' variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software, support such as those in the SANDIA National Laboratory framework SIERRA.

More Details

MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

Walraven, J.A.; Smith, Norman F.; Irwin, Lloyd W.; Helgesen, Karen S.; Clement, John J.; Miller, Samuel L.; Dugger, Michael T.

The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

More Details

Monte Carlo simulations of phosphate polyhedron connectivity in glasses

Journal of Non-Crystalline Solids

Alam, Todd M.

Monte Carlo (MC) simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional (2D) exchange and double-quantum (2Q) nuclear magnetic resonance (NMR) experiments of phosphate glasses. These MC simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

More Details

Advanced laser diodes for sensing applications

Vawter, Gregory A.; Mar, Alan M.; Chow, Weng W.; Allerman, A.A.

The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

More Details

Comparison of fabrication approaches for selectively oxidized VCSEL arrays

Proceedings of SPIE - The International Society for Optical Engineering

Geib, K.M.; Choquette, K.D.; Allerman, A.A.; Briggs, R.D.; Hindi, J.J.

The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. We have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.

More Details

Fabrication and characterization of GaN junction field effect transistors

Materials Research Society Symposium - Proceedings

Zhang, L.; Lester, L.F.; Baca, A.G.; Shul, Randy J.; Chang, P.C.; Willison, C.G.; Mishra, U.K.; Denbaars, S.P.; Zolper, J.C.

Junction field effect transistors (JFET) were fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition. The DC and microwave characteristics, as well as the high temperature performance of the devices were studied. These devices exhibited excellent pinch-off and a breakdown voltage that agreed with theoretical predictions. An extrinsic transconductance (gm) of 48 mS/mm was obtained with a maximum drain current (ID) of 270 mA/mm. The microwave measurement showed an fT of 6 GHz and an fmax of 12 GHz. Both the ID and the gm were found to decrease with increasing temperature, possibly due to lower electron mobility at elevated temperatures. These JFETs exhibited a significant current reduction after a high drain bias was applied, which was attributed to a partially depleted channel caused by trapped electrons in the semi-insulating GaN buffer layer.

More Details

Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

IEEE Conference Record of Power Modulator Symposium

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, W.D.; Brown, D.J.; Hjalmarson, Harold P.; Baca, A.G.; Thornton, R.L.; Donaldson, R.D.

The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100 A for a dopant diffusion depth of 4 μm. This current could be increased by connecting and triggering parallel switches. The contact metal has a different damage mechanism and the threshold for damage (approximately 40 A) is not further improved beyond a dopant diffusion depth of about 2 μm. In a diffusion-doped contact switch, the switching performance is not degraded at the onset of contact metal erosion, unlike a switch with conventional contacts. For fireset applications operating at 1 kV/1 kA levels and higher, doped contacts have not yet resulted in improved longevity. We employ multi-filament operation and InPb solder/Au ribbon wirebonding to demonstrate >100 shot lifetime at 1 kV/1 kA.

More Details
Results 80901–80925 of 80,958
Results 80901–80925 of 80,958