Publications

Results 80851–80875 of 80,958
Skip to search filters

A GaAs heterojunction bipolar transistor with 106 V breakdown

Baca, A.G.; Klem, John F.; Ashby, Carol I.; Martin, Dennis C.

A high voltage GaAs HBT with an open-base collector breakdown voltage of 106 V and an open-emitter breakdown voltage of 134 V has been demonstrated. A high quality 9.0 {micro}m thick collector doped to 2.0{times}10{sup 15} cm{sup {minus}3} grown by MBE on a doped GaAs substrate is the key to achieving this breakdown. These results were achieved for HBTs with 4{times}40 {micro}m{sup 2} emitters. DC current gain of 38 at 6,000 A/cm{sup 2} was measured.

More Details

Discretization errors associated with Reproducing Kernel Methods: One-dimensional domains

Voth, Thomas E.; Christon, Mark A.

The Reproducing Kernel Particle Method (RKPM) is a discretization technique for partial differential equations that uses the method of weighted residuals, classical reproducing kernel theory and modified kernels to produce either ``mesh-free'' or ``mesh-full'' methods. Although RKPM has many appealing attributes, the method is new, and its numerical performance is just beginning to be quantified. In order to address the numerical performance of RKPM, von Neumann analysis is performed for semi-discretizations of three model one-dimensional PDEs. The von Neumann analyses results are used to examine the global and asymptotic behavior of the semi-discretizations. The model PDEs considered for this analysis include the parabolic and hyperbolic (first and second-order wave) equations. Numerical diffusivity for the former and phase speed for the later are presented over the range of discrete wavenumbers and in an asymptotic sense as the particle spacing tends to zero. Group speed is also presented for the hyperbolic problems. Excellent diffusive and dispersive characteristics are observed when a consistent mass matrix formulation is used with the proper choice of refinement parameter. In contrast, the row-sum lumped mass matrix formulation severely degraded performance. The asymptotic analysis indicates that very good rates of convergence are possible when the consistent mass matrix formulation is used with an appropriate choice of refinement parameter.

More Details

InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistor

Baca, A.G.

The authors have demonstrated a functional NpN double heterojunction bipolar transistor (DHBT) using InGaAsN for base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs HBT. The lower V{sub ON} is attributed to the smaller bandgap (E{sub g}=1.20eV) of MOCVD grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the BV{sub CEO} is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs Hbts of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger {triangle}E{sub C} between InGaAsN and GaAs, a graded InGaAs layer with {delta}-doping is inserted at the base-collector junction. The improved device has a peak current gain of 7 with ideal IV characteristics.

More Details

Dual SAW sensor technique for determining mass and modulus changes in thin silicate films during gas adsorption

Hietala, Vincent M.; Brinker, C.J.; Hietala, Vincent M.

Surface acoustic wave (SAW) sensors, which are sensitive to a variety of surface changes, have been widely used for chemical and physical sensing. The ability to control or compensate for the many surface forces has been instrumental in collecting valid data. In cases where it is not possible to neglect certain effects, such as frequency drift with temperature, methods such as the dual sensor technique have been utilized. This paper describes a novel use of a dual sensor technique, using two sensor materials, Quartz and GaAs, to separate out the contributions of mass and modulus of the frequency change during gas adsorption experiments. The large modulus change in the film calculated using this technique, and predicted by the Gassmann equation, provide a greater understanding of the challenges of SAW sensing.

More Details

Predictability of steel containment response near failure

Ludwigsen, John S.; Luk, Vincent K.; Hessheimer, Michael F.; Hessheimer, Michael F.

The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms.

More Details

Water Supply Infrastructure System Surety

Ekman, Mark E.

The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

More Details

Analysis of the interphase of a polyamide bonded to chromic acid anodized Ti-6AL-4V

Giunta, Rachel K.

Structural adhesive joints, when tested as made, typically fail cohesively through the centerline of the adhesive. However, in any study of adhesive joint durability, failure near the adhesive/substrate interface becomes an important consideration. In the current study, an interfacially debonding adhesive test, the notched coating adhesion (NCA) test, was applied to LaRC(trademark) PETI-5 adhesive bonded to chronic acid anodized (CAA) Ti-6Al-4V. Post-failure analysis of the interphase region included X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). Mechanical interlocking between an adhesive and a substrate occurs when the liquid adhesive flows into interstices of the substrate, solidifies, and becomes locked in place. Mechanical interlocking is believed to significantly contribute to the adhesion of substrates that exhibit microroughness, such as metal surfaces treated with chromic acid anodization or sodium hydroxide anodization. Filbey and Wightman found that an epoxy penetrated the pores of CAA Ti-6Al-4V, one of the limited number of pore penetration studies that have been reported. In the current study, the penetration of PETI-5 into the pores of CAA Ti-6Al-4V is investigated through analysis of adhesive/substrate failure surfaces.

More Details

Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

Lopez Mestre, Carlos L.; Koski, Jorman A.

A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360{degree}, 180{degree}, and 90{degree} sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360{degree}, 180{degree}, and 90{degree} cases, respectively.

More Details

L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

Luk, Ting S.; Luk, Ting S.; Cameron, Stewart M.

Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

More Details

Studies on UV filaments in air

Luk, Ting S.; Bernstein, Aaron C.; Cameron, Stewart M.; Luk, Ting S.

UV filaments in air have been examined on the basis of the diameter and length of the filament, the generation of new spectral components, and the ionization by multiphoton processes. There have been numerous observations of filaments at 800 nm. The general perception is that, above a critical power, the beam focuses because nonlinear self-lensing overcomes diffraction. The self-focusing proceeds until an opposing higher order nonlinearity forms a stable balance.

More Details

Cathodoluminescent display phosphors

Rohwer, Lauren E.

The past several years rendered a resurgence of interest in phosphors for low-voltage flat panel displays utilizing cathodoluminescence (CL). A major selection criterion for these phosphors is CL efficiency. The objective is to maximize the efficiency at low voltages. This work focuses on understanding the materials properties that influence CL efficiency below 1 kV. Existing high-voltage CL efficiency models take into account intrinsic materials properties such as band-gap energy. Experimental data reveals that the CL efficiency also depends on physical properties such as particle and crystallite size. An update, predictive model of CL efficiency that includes the effects of crystallite size, radiative recombination probability, and electron accelerating potential was developed. The predicted efficiencies agree very well with experimental results. The experimental data were collected using a hot filament electron gun in a demountable high-vacuum chamber. To obtain measurement accuracy, secondary electrons were collected and the phosphor excited with a uniform beam profile. A CL characterization protocol for display phosphors was established at Sandia National Laboratories and made available to phosphor researchers.

More Details

Combustion synthesis and effects of processing parameters on physical properties of {alpha}-alumina

Rohwer, Lauren E.; Rohwer, Lauren E.

Fine particle porous {alpha}-alumina has been prepared by a wet chemical method of combustion synthesis using an aqueous precursor containing aluminum nitrate (oxidizer) and carbohydrazide, an organic fuel as starting materials. The aluminum nitrate and carbohydrazide were reacted exothermically at 400--600 C. The synthesis of {alpha}-alumina ({alpha}-Al{sub 2}O{sub 3}) was used as a model for understanding the effects of processing parameters on physical properties such as surface area, average pore size, and residual carbon content. The porous powders were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis and elemental analysis. The decomposition of the starting materials was investigated using differential thermal and thermogravimetric analyses (DTA/TGA). It has been shown that the furnace temperature, fuel/oxidizer ratio, and precursor water content can be tailored to produce powders with different physical properties.

More Details

Single-step assembly of complex 3-D microstructures

Rodgers, Murray S.; Rodgers, Murray S.

This paper describes three-dimensional microstructures fabricated in a planar process and assembled in a single step. Multiple plates are constrained by hinges in such a way as to reduce the assembly process to a single degree-of-freedom of motion. Serial microassembly of these structures is simpler; moreover, self-assembly using hydrodynamic forces during release is much more feasible than with earlier, multiple degree-of-freedom hinged structures. A 250-{micro}m corner cube reflector, a 6-sided closed box, and a 3-D model of the Berkeley Campanile clock tower have been demonstrated in the 4-level polysilicon SUMMiT MEMS foundry.

More Details

Properties of low residual stress silicon oxynitrides used as a sacrificial layer

Habermehl, Scott D.; Halliburton, William M.; Sniegowski, Jeffry J.

Low residual stress silicon oxynitride thin films are investigated for use as a replacement for silicon dioxide (SiO{sub 2}) as sacrificial layer in surface micromachined microelectrical-mechanical systems (MEMS). It is observed that the level of residual stress in oxynitrides is a function of the nitrogen content in the film. MEMS film stacks are prepared using both SiO{sub 2} and oxynitride sacrificial layers. Wafer bow measurements indicate that wafers processed with oxynitride release layers are significantly flatter. Polycrystalline Si (poly-Si) cantilevers fabricated under the same conditions are observed to be flatter when processed with oxynitride rather than SiO{sub 2} sacrificial layers. These results are attributed to the lower post-processing residual stress of oxynitride compared to SiO{sub 2} and reduced thermal mismatch to poly-Si.

More Details

DC characteristics of OMVPE-grown N-p-n InGaP/InGaAsN DHBTs

Baca, A.G.

The authors demonstrate, for the first time, a functional N-p-n heterojunction bipolar transistor using a novel material, InGaAsN, with a bandgap energy of 1.2eV as the p-type base layer. A 300{angstrom}-thick In{sub x}Ga{sub 1-x}As graded layer was introduced to reduce the conduction band offset at the p-type InGaAsN base and n-type GaAs collector junction. For an emitter size of 500 {mu}m{sup 2}, a peak current gain of 5.3 has been achieved.

More Details

AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

Baca, A.G.

The authors demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub c} and negligible {triangle}E{sub v}, this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (E{sub g}=1.20eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs.

More Details

Why semiconductors must be hardened when used in space

Winokur, Peter S.

The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

More Details

Ion trapping and separation using potential wells

Butler, Michael A.

A new mode of operation for an ion mobility spectrometer (IMS) has been demonstrated that uses potential wells to trap and separate ions by their mobility. This mode of operation has been made feasible by the improvements in personal computers that now allow real-time control of the potentials on ring electrodes in the IMS drift tube. This mode of operation does not require a shutter grid and allows the accumulation of ions in the potential well to enhance the ion signal. Loss of ions from the potential well is controlled by the radial electric fields required by Gauss's law.

More Details

Comments on the geophysics paper -- Multiparameter l(1) norm waveform fitting: Interpretation of Gulf of Mexico reflection seismograms: by H. Djikpesse and A. Tarantola

Minkoff, Susan E.

In their recent paper, Djikpesse and Tarantola (Geophysics 65 (4) pp. 1023-1035, hereinafter D and T) raise a central question about geophysical inversion: how accurately must the physics of seismic waves in the Earth be modeled in order that inversion succeed? Two general criteria for successful inversion appear in D and T's discussion: fit of predicted to observed data, and prediction of Earth structure. The hypothesis underlying inversion is that these criteria are unextricably linked, so that data fit should lead to accurate inference of subsurface features. The authors have also worked on the data discussed in D and T, using different modeling choices and inversion algorithms but also achieving quite successful inversions, in both senses. They feel that a brief comparison of methods and results might highlight the subtle relation between accuracy in modeling and success in inversion as well as raising questions about the appropriateness of D and T's modeling and inversion choices.

More Details

Design of dynamic load-balancing tools for parallel applications

Devine, Karen D.; Hendrickson, Bruce A.; Boman, Erik G.; Vaughan, Courtenay T.

The design of general-purpose dynamic load-balancing tools for parallel applications is more challenging than the design of static partitioning tools. Both algorithmic and software engineering issues arise. The authors have addressed many of these issues in the design of the Zoltan dynamic load-balancing library. Zoltan has an object-oriented interface that makes it easy to use and provides separation between the application and the load-balancing algorithms. It contains a suite of dynamic load-balancing algorithms, including both geometric and graph-based algorithms. Its design makes it valuable both as a partitioning tool for a variety of applications and as a research test-bed for new algorithmic development. In this paper, the authors describe Zoltan's design and demonstrate its use in an unstructured-mesh finite element application.

More Details

Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

Sasaki, Darryl Y.; Alam, Todd M.

Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

More Details

Evaluation of laboratory dolomite core sample size using representative elementary volume concepts

Water Resources Research

Brown, G.O.; Hsieh, H.T.; Lucero, Daniel A.

The adequacy for laboratory testing of four dolomite cores from the Culebra Dolomite of the Rustler Formation at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, were evaluated using representative elementary volume (REV) theory. Gamma ray computerized tomography created three-dimensional grids of bulk density and macropore index over volumes from 1.4 x 10-7 to 1.6 L. Three different methods for both volume averaging and REV analysis were applied and compared. Both density and macropore index converged to single values with increasing volume, which meets the most common qualitative definition of a REV. Statistical test results for the relatively homogeneous samples indicate that volumes larger than 1 to 7 mL have constant properties. Contrarily, a highly varied sample required 250 and 373 mL to achieve invariant density and macropore characteristics, respectively. Prismatic volume averaging was found to be better than slice averaging, while a qualitative test for the REV provided similar results as a rigorous statistical method. All cores were larger than the REV but were significantly different from one another. This implies that multiple cores are necessary to determine the entire range of transport properties within the rock.

More Details

Effective-porosity and dual-porosity approaches to solute transport in the saturated zone at yucca mountain: Implications for repository performance assessment

Geophysical Monograph Series

Arnold, Bill W.; Zhang, Hubao; Parsons, Alva M.

The effective-porosity approach and the dual-porosity approach are examined as two alternative conceptual models of radionuclide migration in fractured media of the saturated zone at Yucca Mountain. Numerical simulations of onedimensional radionuclide transport are performed for the domain relevant to repository performance assessment using the two alternative conceptual approaches. Dual-porosity solute transport modeling produces similar results to effective-porosity modeling for fracture spacing of less than approximately 1 m and greater than about 200 m, which corresponds to values of effective porosity equal to the matrix porosity and the fracture porosity, respectively. For intermediate values of fracture spacing, the dual-porosity approach results in concentration breakthrough curves that differ significantly from the effectiveporosity approach and are characterized by earlier first arrival, greater apparent dispersion, and lower concentrations at later times. The effective-porosity approach, as implemented in recent performance assessment analyses of saturated zone transport at Yucca Mountain, is conservative compared to the dual-porosity approach in terms of both radionuclide concentrations and, generally, travel times.

More Details

Beam shaping element for compact fiber injection systems

Proceedings of SPIE - The International Society for Optical Engineering

Weichman, Louis S.; Dickey, Fred M.; Shagam, Richard N.

Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

More Details

Mechanisms affecting emission in rare-earth-activated phosphors

Materials Research Society Symposium - Proceedings

Tallant, David T.; Seager, Carleton H.; Simpson, Regina L.

The relatively poor efficiency of phosphor materials in cathodoluminescence with low accelerating voltages is a major concern in the design of field emission fiat panel displays operated below 5 kv. Our research on rare-earth-activated phosphors indicates that mechanisms involving interactions of excited activators have a significant impact on phosphor efficiency. Persistence measurements in photoluminescence (PL) and cathodoluminescence (CL) show significant deviations from the sequential relaxation model. This model assumes that higher excited manifolds in an activator de-excite primarily by phonon-mediated sequential relaxation to lower energy manifolds in the same activator ion. In addition to sequential relaxation, there appears to be strong coupling between activators, which results in energy transfer interactions. Some of these interactions negatively impact phosphor efficiency by nonradiatively de-exciting activators, increasing activator concentration enhances these interactions. The net effect is a significant degradation in phosphor efficiency at useful activator concentrations, which is exaggerated when low-energy electron beams are used to excite the emission.

More Details
Results 80851–80875 of 80,958
Results 80851–80875 of 80,958