Publications

Results 226–250 of 80,958
Skip to search filters

Smart Microgrids

Truyol, Sabine O.

The Nation’s electrical power depends on one bulk power grid to support security and economic prosperity. According to the Department of Homeland Security’s Homeland Threat Assessment of 2020, the largest cyber threat to homeland security is potential disruption to critical infrastructure, including power grids. Critical infrastructure includes the physical and cyber systems which generate, transmit, and distribute electricity with an impact on economic security, public health, or safety. The surety of the Nation’s power grid is vital for providing essential services and would put the population at risk if disrupted. Power outages can have catastrophic consequences for critical organizations such as hospitals and military installations. Additionally, the current fossil-fuel dependent power grid is extremely fragile and vulnerable to overloads, storms that destroy power lines, and cyber-attacks.

More Details

Sierra/SolidMechanics 5.10: ITAR Users' Guide

Author, No A.

This is an addendum to the Sierra/SolidMechanics 5.10 User’s Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State’s International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 5.10 User’s Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 5.10 User's Guide

Author, No A.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

More Details

Sierra/SolidMechanics 5.10 Verification Tests Manual

Bergel, Guy L.; Beckwith, Frank B.; Buche, Michael R.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy S.; Thomas, Jesse D.; Trageser, Jeremy T.; Treweek, Benjamin T.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

M4 Summary of EBS International

Hadgu, Teklu H.; Dewers, Thomas D.; Matteo, Edward N.

Thermal-Hydrologic-Mechanical (THM) modeling of DECOVALEX 2023, Task C has continued. In FY2022 the simulations have progressed to Step 1, which is on 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). This report summarizes progress in Thermal-Hydrologic (TH) modeling of Step 1. THM modeling will be documented in future reports.

More Details

GraphAlign: Graph-Enabled Machine Learning for Seismic Event Filtering

Michalenko, Joshua J.; Manickam, Indu; Heck, Stephen H.

This report summarizes results from a 2 year effort to improve the current automated seismic event processing system by leveraging machine learning models that can operated over the inherent graph data structure of a seismic sensor network. Specifically, the GraphAlign project seeks to utilize prior information on which stations are more likely to detect signals originating from particular geographic regions to inform event filtering. To date, the GraphAlign team has developed a Graphical Neural Network (GNN) model to filter out false events generated by the Global Associator (GA) algorithm. The algorithm operates directly on waveform data that has been associated to an event by building a variable sized graph of station waveforms nodes with edge relations to an event location node. This builds off of previous work where random forest models were used to do the same task using hand crafted features. The GNN model performance was analyzed using an 8 week IMS/IDC dataset, and it was demonstrated that the GNN outperforms the random forest baseline. We provide additional error analysis of which events the GNN model performs well and poorly against concluded by future directions for improvements.

More Details

Composing preconditioners for multiphysics PDE systems with applications to Generalized MHD

Tuminaro, Raymond S.; Crockatt, Michael M.; Robinson, Allen C.

New patch smoothers or relaxation techniques are developed for solving linear matrix equations coming from systems of discretized partial differential equations (PDEs). One key linear solver challenge for many PDE systems arises when the resulting discretization matrix has a near null space that has a large dimension, which can occur in generalized magnetohydrodynamic (GMHD) systems. Patch-based relaxation is highly effective for problems when the null space can be spanned by a basis of locally supported vectors. The patch-based relaxation methods that we develop can be used either within an algebraic multigrid (AMG) hierarchy or as stand-alone preconditioners. These patch-based relaxation techniques are a form of well-known overlapping Schwarz methods where the computational domain is covered with a series of overlapping sub-domains (or patches). Patch relaxation then corresponds to solving a set of independent linear systems associated with each patch. In the context of GMHD, we also reformulate the underlying discrete representation used to generate a suitable set of matrix equations. In general, deriving a discretization that accurately approximates the curl operator and the Hall term while also producing linear systems with physically meaningful near null space properties can be challenging. Unfortunately, many natural discretization choices lead to a near null space that includes non-physical oscillatory modes and where it is not possible to span the near null space with a minimal set of locally supported basis vectors. Further discretization research is needed to understand the resulting trade-offs between accuracy, stability, and ease in solving the associated linear systems.

More Details

Photoinitiated Olefin Metathesis and Stereolithographic Printing of Polydicyclopentadiene

Macromolecules

Leguizamon, Samuel C.; Foster, Jeffrey C.; Appelhans, Leah A.; Monk, Nicolas M.; Zapien, Elizabeth M.; Yoon, Alana Y.; Hochrein, Madison T.

Recent progress in photoinitiated ring-opening metathesis polymerization (photoROMP) has enabled the lithographic production of patterned films from olefinic resins. Recently, we reported the use of a latent ruthenium catalyst (HeatMet) in combination with a photosensitizer (2-isopropylthioxanthone) to rapidly photopolymerize dicyclopentadiene (DCPD) formulations upon irradiation with UV light. While this prior work was limited in terms of catalyst and photosensitizer scope, a variety of alternative catalysts and photosensitizers are commercially available that could allow for tuning of thermomechanical properties, potlifes, activation rates, and irradiation wavelengths. Herein, 14 catalysts and 8 photosensitizers are surveyed for the photoROMP of DCPD and the structure–activity relationships of the catalysts examined. Properties relevant to stereolithography additive manufacturing (SLA AM)-potlife, irradiation dose required to gel, conversion-are characterized to develop catalyst and photosensitizer libraries to inform development of SLA AM resin systems. Two optimized catalyst/photosensitizer systems are demonstrated in the rapid SLA printing of complex, multidimensional pDCPD structures with microscale features under ambient conditions.

More Details

Comparative analysis of the sensitivity of nanometallic thin film thermometers

Nanotechnology

Scott, Ethan A.; Carow, Anna; Pete, Douglas V.; Harris, C.T.

Thin film platinum resistive thermometers are conventionally applied for resistance thermometry techniques due to their stability and proven measurement accuracy. Depending upon the required thermometer thickness and temperature measurement, however, performance benefits can be realized through the application of alternative nanometallic thin films. Herein, a comparative experimental analysis is provided on the performance of nanometallic thin film thermometers most relevant to microelectronics and thermal sensing applications: Al, Au, Cu, and Pt. Sensitivity is assessed through the temperature coefficient of resistance, measured over a range of 10-300 K for thicknesses nominally spanning 25-200 nm. The interplay of electron scattering sources, which give rise to the temperature-dependent TCR properties for each metal, are analyzed in the framework of a Mayadas-Shatzkes based model. Despite the prevalence of evaporated Pt thin film thermometers, Au and Cu films fabricated in a similar manner may provide enhanced sensitivity depending upon thickness. These results may serve as a guide as the movement toward smaller measurement platforms necessitates the use of smaller, thinner metallic resistance thermometers.

More Details

Point-by-point inscribed sapphire parallel fiber Bragg gratings in a fully multimode system for multiplexed high-temperature sensing

Optics Letters

Shi, Guannan S.; Shurtz, Randy S.; Pickrell, Gary P.; Wang, Anbo W.; Zhu, Yizheng Z.

In this work, we study the point-by-point inscription of sapphire parallel fiber Bragg gratings (sapphire pFBGs) in a fully multimode system. A parallel FBG is shown to be critical in enabling detectable and reliable high-order grating signals. The impacts of modal volume, spatial coherence, and grating location on reflectivity are examined. Three cascaded seventh-order pFBGs are fabricated in one sapphire fiber for wavelength multiplexed temperature sensing. Using a low-cost, fully multimode 850-nm interrogator, reliable measurement up to 1500°C is demonstrated.

More Details

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

Sierra/SolidMechanics 5.10 In-Development Manual

Bergel, Guy L.; Beckwith, Frank B.; Buche, Michael R.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy S.; Thomas, Jesse T.; Trageser, Jeremy T.; Treweek, Benjamin T.; Veilleux, Michael V.; Wagman, Ellen B.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.10 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Library of Advanced Materials for Engineering (LAMÉ) 5.10

Lester, Brian T.; Long, Kevin N.; Scherzinger, William M.; Vignes, Chet V.; Reedlunn, Benjamin R.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Sierra/SolidMechanics 5.10 Example Problems Manual

Bergel, Guy L.; Beckwith, Frank B.; Buche, Michael R.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy S.; Thomas, Jesse T.; Trageser, Jeremy T.; Treweek, Benjamin T.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are tests that exist in the Sierra / SolidMechanics example problem suite, which is a subset of the Sierra / SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra / SM test suite that are not included in this manual.

More Details

A Trilevel Model for Segmentation of the Power Transmission Grid Cyber Network

IEEE Systems Journal

Arguello, Bryan A.; Gearhart, Jared L.; Johnson, Emma S.

Network segmentation of a power grid's communication system can make the grid more resilient to cyberattacks. Here we develop a novel trilevel programming model to optimally segment a grid communication system, taking into account the actions of an information technology (IT) administrator, attacker, and grid operator. The IT administrator is allowed to segment existing networks, and the attacker is given a budget to inflict damage on the grid by attacking the segmented communication system. Finally, the grid operator can redispatch the grid after the attack to minimize damage. The resulting problem is a trilevel interdiction problem that we solve using a branch and bound algorithm for bilevel problems. We demonstrate the benefits of optimal network segmentation through case studies on the 9-bus Western System Coordinating Council (WSCC) system and the 30-bus IEEE system. These examples illustrate that network segmentation can significantly reduce the threat posed by a cyberattacker.

More Details

Sandia QIS Program Overview [Slides]

Muller, Richard P.

Sandia has a multiplatform, multiapplication quantum information science program. The QIS program is built leveraging Sandia’s strengths in microelectronics fabrication, nanotechnology, and computational modeling, and complements and strengthens Sandia’s overall mission.

More Details

Using the Information Harm Triangle to Identify Risk-Informed Cybersecurity Strategies for Instrumentation and Control Systems

Nuclear Technology

Rowland, Michael T.; Maccarone, Lee M.; Clark, Andrew

The Information Harm Triangle (IHT) is a novel approach that aims to adapt intuitive engineering concepts to simplify defense in depth for instrumentation and control (I&C) systems at nuclear power plants. This approach combines digital harm, real-world harm, and unsafe control actions (UCAs) into a single graph named “Information Harm Triangle.” The IHT is based on the postulation that the consequences of cyberattacks targeting I&C systems can be expressed in terms of two orthogonal components: a component representing the magnitude of data harm (DH) (i.e., digital information harm) and a component representing physical information harm (PIH) (i.e., real-world harm, e.g., an inadvertent plant trip). The magnitude of the severity of the physical consequence is the aspect of risk that is of concern. The sum of these two components represents the total information harm. The IHT intuitively informs risk-informed cybersecurity strategies that employ independent measures that either act to prevent, reduce, or mitigate DH or PIH. Another aspect of the IHT is that the DH can result in cyber-initiated UCAs that result in severe physical consequences. The orthogonality of DH and PIH provides insights into designing effective defense in depth. Finally, the IHT can also represent cyberattacks that have the potential to impede, evade, or compromise countermeasures from taking appropriate action to reduce, stop, or mitigate the harm caused by such UCAs. Cyber-initiated UCAs transform DH to PIH.

More Details

Carbon dioxide-enhanced metal release from kerogen

Scientific Reports

Ho, Tuan A.; Wang, Yifeng

Heavy metals released from kerogen to produced water during oil/gas extraction have caused major environmental concerns. To curtail water usage and production in an operation and to use the same process for carbon sequestration, supercritical CO2 (scCO2) has been suggested as a fracking fluid or an oil/gas recovery agent. It has been shown previously that injection of scCO2 into a reservoir may cause several chemical and physical changes to the reservoir properties including pore surface wettability, gas sorption capacity, and transport properties. Using molecular dynamics simulations, we here demonstrate that injection of scCO2 might lead to desorption of physically adsorbed metals from kerogen structures. This process on one hand may impact the quality of produced water. On the other hand, it may enhance metal recovery if this process is used for in-situ extraction of critical metals from shale or other organic carbon-rich formations such as coal.

More Details

Control of second-harmonic generation in all-dielectric intersubband metasurfaces by controlling the polarity of χ (2)

Optics Express

Sarma, Raktim S.; Xu, Jiaming X.; de Ceglia, Domenico d.; Carletti, Luca C.; Klem, John K.; Belkin, Mikhail A.; Brener, Igal B.

All-dielectric metasurfaces have recently led to a paradigm shift in nonlinear optics as they allow for circumventing the phase matching constraints of bulk crystals and offer high nonlinear conversion efficiencies when normalized by the light-matter interaction volume. Unlike bulk crystals, in all-dielectric metasurfaces nonlinear conversion efficiencies primarily rely on the material nonlinearity, field enhancements, and the modal overlaps, therefore most efforts to date have only focused on utilizing these degrees of freedom. In this work, we demonstrate that for second-harmonic generation in all-dielectric metasurfaces, an additional degree of freedom is the control of the polarity of the nonlinear susceptibility. We demonstrate that semiconductor heterostructures that support resonant nonlinearities based on quantum-engineered intersubband transitions provide this new degree of freedom. We can flip and control the polarity of the nonlinear susceptibility of the dielectric medium along the growth direction and couple it to the Mie-type photonic modes. Here we demonstrate that engineering the χ (2) polarity in the meta-atom enables the control of the second-harmonic radiation pattern and conversion efficiency. Our results therefore open a new direction for engineering and optimizing second-harmonic generation using all-dielectric intersubband nonlinear metasurfaces.

More Details

High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy

Metals

Ehler, Ehler; Dhiman, Dhiman; Dillard, Dillard; Dingreville, Remi P.; Barrick, Erin J.; Kustas, Andrew K.; Tomar, Tomar

In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s-1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process.

More Details

Enabling power measurement and control on Astra: The first petascale Arm supercomputer

Concurrency and Computation. Practice and Experience

Grant, Ryan E.; Hammond, Simon D.; Laros, James H.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.; Ward, H.L.; Younge, Andrew J.

Astra, deployed in 2018, was the first petascale supercomputer to utilize processors based on the ARM instruction set. The system was also the first under Sandia's Vanguard program which seeks to provide an evaluation vehicle for novel technologies that with refinement could be utilized in demanding, large-scale HPC environments. In addition to ARM, several other important first-of-a-kind developments were used in the machine, including new approaches to cooling the datacenter and machine. Here we document our experiences building a power measurement and control infrastructure for Astra. While this is often beyond the control of users today, the accurate measurement, cataloging, and evaluation of power, as our experiences show, is critical to the successful deployment of a large-scale platform. While such systems exist in part for other architectures, Astra required new development to support the novel Marvell ThunderX2 processor used in compute nodes. In addition to documenting the measurement of power during system bring up and for subsequent on-going routine use, we present results associated with controlling the power usage of the processor, an area which is becoming of progressively greater interest as data centers and supercomputing sites look to improve compute/energy efficiency and find additional sources for full system optimization.

More Details

Thermodynamically consistent versions of approximations used in modelling moist air

Quarterly Journal of the Royal Meteorological Society

Eldred, Christopher; Guba, Oksana G.; Taylor, Mark A.

Some existing approaches to modelling the thermodynamics of moist air make approximations that break thermodynamic consistency, such that the resulting thermodynamics does not obey the first and second laws or has other inconsistencies. Recently, an approach to avoid such inconsistency has been suggested: the use of thermodynamic potentials in terms of their natural variables, from which all thermodynamic quantities and relationships (equations of state) are derived. In this article, we develop this approach for unapproximated moist-air thermodynamics and two widely used approximations: the constant-κ approximation and the dry heat capacities approximation. The (consistent) constant-κ approximation is particularly attractive because it leads to, with the appropriate choice of thermodynamic variable, adiabatic dynamics that depend only on total mass and are independent of the breakdown between water forms. Additionally, a wide variety of material from different sources in the literature on thermodynamics in atmospheric modelling is brought together. It is hoped that this article provides a comprehensive reference for the use of thermodynamic potentials in atmospheric modelling, especially for the three systems considered here.

More Details

The economic value of photovoltaic performance loss mitigation in electricity spot markets

Renewable Energy

Micheli, Leonardo M.; Theristis, Marios; Talavera, Diego L.; Nofuentes, Gustavo N.; Stein, Joshua S.; Fernandez, Eduardo F.

Photovoltaic (PV) performance is affected by reversible and irreversible losses. These can typically be mitigated through responsive and proactive operations and maintenance (O&M) activities. However, to generate profit, the cost of O&M must be lower than the value of the recovered electricity. This value depends both on the amount of recovered energy and on the electricity prices, which can vary significantly over time in spot markets. The present work investigates the impact of the electricity price variability on the PV profitability and on the related O&M activities in Italy, Portugal, and Spain. Here, it is found that the PV revenues varied by 1.6 × to 1.8 × within the investigated countries in the last 5 years. Moreover, forecasts predict higher average prices in the current decade compared to the previous one. These will increase the future PV revenues by up to 60% by 2030 compared to their 2015–2020 mean values. These higher revenues will make more funds available for better maintenance and for higher quality components, potentially leading to even higher energy yield and profits. Linearly growing or constant price assumptions cannot fully reproduce these expected price trends. Furthermore, significant price fluctuations can lead to unexpected scenarios and alter the predictions.

More Details

Large-scale frictionless jamming with power-law particle size distributions

Physical Review. E

Monti, Joseph M.; Clemmer, Joel T.; Srivastava, Ishan S.; Silber, Leonardo S.; Grest, Gary S.; Lechman, Jeremy B.

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Here, invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.

More Details

Characterization of Shallow, Undoped Ge/SiGe Quantum Wells Commercially Grown on 8-in. (100) Si Wafers

ACS Applied Electronic Materials

Hutchins-Delgado, Troy A.; Miller, Andrew J.; Scott, Robin S.; Lu, Ping L.; Luhman, Dwight R.; Lu, Tzu-Ming L.

Hole spins in Ge quantum wells have shown success in both spintronic and quantum applications, thereby increasing the demand for high-quality material. We performed material analysis and device characterization of commercially grown shallow and undoped Ge/SiGe quantum well heterostructures on 8-in. (100) Si wafers. Material analysis reveals the high crystalline quality, sharp interfaces, and uniformity of the material. We demonstrate a high mobility (1.7 × 105 cm2 V–1 s–1) 2D hole gas in a device with a conduction threshold density of 9.2 × 1010 cm–2. We study the use of surface preparation as a tool to control barrier thickness, density, mobility, and interface trap density. We report interface trap densities of 6 × 1012 eV–1. Our results validate the material’s high quality and show that further investigation into improving device performance is needed. We conclude that surface preparations which include weak Ge etchants, such as dilute H2O2, can be used for postgrowth control of quantum well depth in Ge-rich SiGe while still providing a relatively smooth oxide–semiconductor interface. Our results show that interface state density is mostly independent of our surface preparations, thereby implying that a Si cap layer is not necessary for device performance. Transport in our devices is instead limited by the quantum well depth. Commercially sourced Ge/SiGe, such as studied here, will provide accessibility for future investigations.

More Details
Results 226–250 of 80,958
Results 226–250 of 80,958