Publications

Results 26–50 of 109
Skip to search filters

Absence of mineral colloids in high ionic strength solutions associated with salt formations: Experimental determination and applications for nuclear waste management

Solution Chemistry: Advances in Research and Applications

Xiong, Yongliang X.; Kirkes, Leslie D.; Kim, Sungtae K.; Marrs, Cassandra M.; Knox, Jandi L.; Dean, Justin; Deng, Haoran; Nemer, Martin N.

Radionuclides and heavy metals easily sorb onto colloids. This phenomenon can have a beneficial impact on environmental clean-up activities if one is trying to scavenge hazardous elements from soil for example. On the other hand, it can have a negative impact in cases where one is trying to immobilize these hazardous elements and keep them isolated from the public. Such is the case in the field of radioactive waste disposal. Colloids in the aqueous phase in a radioactive waste repository could facilitate transport of contaminants including radioactive nuclides. Salt formations have been recommended for nuclear waste isolation since the 1950's by the U.S. National Academy of Science. In this capacity, salt formations are ideal for isolation of radioactive waste. However, salt formations contain brine (the aqueous phase), and colloids could possibly be present. If present in the brines associated with salt formations, colloids are highly relevant to the isolation safety concept for radioactive waste. The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico is a premier example where a salt formation is being used as the primary isolation barrier for radioactive waste. WIPP is a U.S. Department of Energy geological repository for the permanent disposal of defenserelated transuranic (TRU) waste. In addition to the geological barrier that the bedded salt formation provides, an engineered barrier of MgO added to the disposal rooms is used in WIPP. Industrial-grade MgO, consisting mainly of the mineral periclase, is in fact the only engineered barrier certified by the U.S. Environmental Protection Agency (EPA) for emplacement in the WIPP. Of interest, an Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The Asse repository is located in a domal salt formation and is another example of using salt formations for disposal of radioactive waste. Should colloids be present in salt formations, they would facilitate transport of contaminants including actinides. In the case of colloids derived from emplaced MgO, it is the hydration and carbonation products that are of interest. These colloids could possibly form under conditions relevant in particular to the WIPP. In this chapter, we report a systematic experimental study performed at Sandia National Laboratories in Carlsbad, New Mexico, related to the WIPP engineered barrier, MgO. The aim of this work is to confirm the presence or absence of mineral fragment colloids related to MgO in high ionic strength solutions (brines). The results from such a study provides information about the stability of colloids in high ionic strength solutions in general, not just for the WIPP. We evaluated the possible formation of mineral fragment colloids using two approaches. The first approach is an analysis of long-term MgO hydration and carbonation experiments performed at Sandia National Laboratories (SNL) as a function of equivalent pore sizes. The MgO hydration products include Mg(OH)2 (brucite) and Mg3 Cl(OH)5•4H2O (phase 5), and the carbonation product includes Mg5(CO3)4(OH)2•4H2O (hydromagnesite). All these phases contain magnesium. Therefore, if mineral fragment colloids of these hydration and carbonation products were formed in the SNL experiments mentioned above, magnesium concentrations in the filtrate from the experiments would show a dependence on ultrafiltration. In other words, there would be a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs for the filtration. Therefore, we performed ultrafiltration on solution samples from the SNL hydration and carbonation experiments as a function of equivalent pore size. We filtered solutions using a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cutoffs, implying the absence of mineral fragment colloids. The second approach uses spiked Cs+ to indicate the possible presence of mineral fragment colloids. Cs+ is easily absorbed by colloids. Therefore, we added Cs+ to a subset of SNL MgO hydration and carbonation experiments. Again, we filtered the solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. This time we measured the concentrations of Cs. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate the absence of mineral fragment colloids from MgO hydration and carbonation products. Based on our experimental results, we acknowledge that mineral fragment colloids were not formed in the SNL MgO hydration and carbonation experiments, and we further conclude that high ionic strength solutions associated with salt formations prevent the formation of mineral fragment colloids. This is due to the fact that the high ionic strength solutions associated with salt formations have high concentrations of both monovalent and divalent metal ions that are orders of magnitude higher than the critical coagulation concentrations for mineral fragment colloids. The absence of mineral fragment colloids in high ionic strength solutions implies that contributions from mineral fragment colloids to the total mobile source term of radionuclides in a salt repository are minimal.

More Details

Modeling actinide solubilities in alkaline to hyperalkaline solutions: Solubility of AM(OH)3(S) in KOH solutions

Solution Chemistry: Advances in Research and Applications

Xiong, Yongliang X.

In this work, a Pitzer model is developed for the K+(Na+)-Am(OH)4−-Cl−-OH− system based on Am(OH)3(s) solubility data in highly alkaline KOH solutions. Under highly alkaline conditions, the solubility reaction of Am(OH)3(s) is expressed as: Solubilities of Am(OH)3(s) based on the above reaction are modeled as a function of KOH concentrations. The stability constant for Am(OH)4− is evaluated using Am(OH)3(s) solubility data in KOH solutions up to 12 mol•kg-1 taken from the literature. The Pitzer interaction parameters related to Al(OH)4- are used as analogs for the interaction parameters involving Am(OH)4- to obtain the stability constant for Am(OH)4-. The for the reaction is -11.34 ± 0.15 (2σ).

More Details

Experimental determination of brucite solubility in NaCl solutions at elevated temperatures

Solution Chemistry: Advances in Research and Applications

Kirkes, Leslie D.; Xiong, Yongliang X.

Salt formations have been recommended for nuclear waste isolation since the 1950‘s by the U.S. National Academy of Science. This recommendation has been implemented in southeast New Mexico where the Waste Isolation Pilot Plant (WIPP) has been built to isolate defense-related transuranic waste. The WIPP is located in a bedded salt formation, the Salado Formation. Placement of crystalline MgO, which hydrates rapidly to form brucite, is the only engineered barrier employed in the WIPP design. The MgO acts as a chemical conditioner in the WIPP repository in controlling the fugacity of carbon dioxide. Similarly, an Mg(OH)2-based engineered barrier is proposed for the German Asse salt mine repository. Thus, the solubility of brucite is of interest to salt repository programs which can expect a variety of temperatures within the repository and a variety of fluids (brines) coming in contact with the waste. Salt repository programs are not the only programs that stand to benefit from the information presented in this book chapter. There are other applications where this information is of interest. In natural environments brucite frequently precipitates from hyperalkaline hydrothermal fluids with high ionic strengths. For instance, brucite chimneys have been observed to form at elevated temperatures in ocean floors. The information presented in this work can be used to accurately model the formation of such brucite chimneys. In this study, we have determined solubilities of brucite as a function of ionic strength in NaCl solutions to I = 5.6 mol•kg-1 at elevated temperatures to 353.15 K. In our solubility measurements, we first independently determined the correction factors for converting pH readings to pHm (negative logarithm of hydrogen ion concentration on a molal scale, mol•kg-1) in NaCl solutions from 0.01 to 5.6 mol•kg-1 at elevated temperatures. Using the SIT model, we obtain the solubility constants for brucite at infinite dilution as a function of temperature, which can be described by the following expression, where T is temperature in K. This expression can be used from 273.15 K to 373.15 K.

More Details

Long-Term Experimental Determination of Solubilities of Micro-Crystalline Nd(III) Hydroxide in High Ionic Strength Solutions: Applications to Nuclear Waste Management [A Pitzer Model for Am(III)/Nd(III) hydroxide solubility in NaCl-H2O at 298.15 K to high ionic strengths: Experimental validation and model applications]

Aquatic Geochemistry

Xiong, Yongliang X.; Kirkes, Leslie D.; Marrs, Cassandra M.

In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH)3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH)3(micro cr), avoiding the possibility of phase change.

More Details

Experimental determination of solubilities of sodium polyborates in MgCl2 solutions: Solubility constant of di-sodium hexaborate tetrahydrate, and implications for the diagenetic formation of ameghinite

Canadian Mineralogist

Xiong, Yongliang X.; Kirkes, Leslie D.; Knox, Jandi L.; Marrs, Cassandra M.

In this study, solubility measurements were conducted for sodium polyborates in MgCl2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl2 solution: {equation presented} However, in a 0.1 mol/kg MgCl2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: {equation presented} In this study, the equilibrium constant (log K0) for Reaction 2 at 25 °C and infinite dilution was determined to be -16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K0 for Reaction 1 from a previous publication from this research group, and log K0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, {equation presented} was derived to be -45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes and natural brines. Di-sodium hexaborate tetrahydrate is a polymorph of the mineral ameghinite [chemical formula Na2B6O10·4H2O; structural formula NaB3O3(OH)4 or Na2B6O6(OH)8]. Di-sodium hexaborate tetrahydrate could be a precursor of ameghinite and could be transformed when borate deposits are subject to diagenesis.

More Details

Comment on “Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 °C” by Gautier, Q., Benezeth, P., Mavromatis, V., and Schott, J

Geochimica et Cosmochimica Acta

Xiong, Yongliang X.

Gautier et al. (2014) recently published their determination of hydromagnesite solubility constant and hydromagnesite growth kinetics. Although their raw data appear to be of high quality, there is an oversight in their calculations of the hydromagnesite solubility constants given the solution compositions in their experiments. The oversight lies in the fact that they did not consider the constraint of simultaneous equilibrium with brucite. This oversight causes their newly calculated equilibrium constant for hydromagnesite to be discordant with the literature values (Königsberger et al., 1992; Xiong, 2011).

More Details

Status Report on Laboratory Testing and International Collaborations in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu H.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Mills, Melissa M.; Kirkes, Leslie D.; Xiong, Yongliang X.; Icenhower, Jonathan I.

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

More Details

Solution chemistry for actinide borate species to high ionic strengths: Equilibrium constants for AmHB4O7 2+ And AmB9O13(OH)4(cr) and their importance to nuclear waste management

MRS Advances

Xiong, Yongliang X.

Borate is present in natural groundwaters and borate is also released into groundwaters when borosilicate glass, waste form for high level nuclear waste, is corroded. Borate can form an aqueous complex, AmHB4O7 2+, with actinides in +III oxidation state. In this work, we present our evaluation of the equilibrium constant for formation of AmHB4O7 2+ and the associated Pitzer interaction parameters at 25°C. Using Nd(III) as an analog to Am(III), solubility data of Nd(OH)3(s) in NaCl solutions in the presence of borate ion from the literature, is used to determine Am(III) interactions with borate. The log10K for the formation reaction is 37.34. This evaluation is in accordance with the Waste Isolation Pilot Plant (WIPP) thermodynamic model in which the borate species include B(OH)3(aq), B(OH)4 -, B3O3(OH)4 -, B4O5(OH)4 2-, and NaB(OH)4(aq). The WIPP thermodynamic database uses the Pitzer model to calculate activity coefficients of aqueous species. In addition, the equilibrium constant for dissolution of AmB9O13(OH)4(cr) at 25°C is evaluated from the solubility data on NdB9O13(OH)4(cr) in NaCl solutions, again using Nd(III) as an analog to Am(III). The log10K for the dissolution reaction is -79.30. In the evaluation for log10K for the dissolution reaction, AmHB4O7 2+ is also considered. The equilibrium constant and Pitzer parameters evaluated by this study will be important to describe the chemical behavior of Am(III) in the presence of borate in geological repositories.

More Details

Absence of colloids related to engineered barrier (MGO): Experimental determination

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Xiong, Yongliang X.; Kirkes, Leslie D.; Kim, Sungtae K.; Marrs, Cassandra M.; Dean, Justin; Knox, Jandi L.; Deng, Haoran D.; Nemer, Martin N.

More Details

Solubility constants of hydroxyl sodalite at elevated temperatures evaluated from hydrothermal experiments: Applications to nuclear waste isolation

Applied Geochemistry

Xiong, Yongliang X.

In this study, solubility constants of hydroxyl sodalite (ideal formula, Na8[Al6Si6O24][OH]2·3H2O) from 25 °C to 100 °C are obtained by applying a high temperature Al—Si Pitzer model to evaluate solubility data on hydroxyl sodalite in high ionic strength solutions at elevated temperatures. A validation test comparing model-independent experimental data to model predictions demonstrates that the solubility values produced by the model are in excellent agreement with the experimental data. The equilibrium constants obtained in this study have a wide range of applications, including synthesis of hydroxyl sodalite, de-silication in the Bayer process for extraction of alumina, and the performance of proposed sodalite waste forms in geological repositories in various lithologies including salt formations. The thermodynamic calculations based on the equilibrium constants obtained in this work indicate that the solubility products in terms of mΣAl×mΣSi for hydroxyl sodalite are very low (e.g., ∼10–13 [mol·kg–1]2 at 100 °C) in brines characteristic of salt formations, implying that sodalite waste forms would perform very well in repositories located in salt formations. The information regarding the solubility behavior of hydroxyl sodalite obtained in this study provides guidance to investigate the performance of other pure end-members of sodalite such as chloride- and iodide-sodalite, which may be of interest for geological repositories in various media.

More Details
Results 26–50 of 109
Results 26–50 of 109