Active participation in international R&D is crucial for achieving the Spent Fuel Waste Science & Technology (SFWST) long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) has developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY17 focused on the collaboration through the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2019) project. The DECOVALEX project is an international research and model comparison collaboration, initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. SNL has been participating in three tasks of the DECOVALEX project: Task A. Modeling gas injection experiments (ENGINEER), Task C. Modeling groundwater recovery experiment in tunnel (GREET), and Task F. Fluid inclusion and movement in the tight rock (FINITO).
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method [1] has been updated to provide capabilities that enhance representation of fractured rock. A companion paper [2] provides details of the methods for generating fracture network. In this paper use of the fracture model for the simulation of flow and transport is presented. Simulations were conducted to estimate flow and transport using an enhanced FCM method. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization FCM produced permeability and porosity fields. The PFLOTRAN code [3] was used to simulate flow and transport. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest to nuclear waste disposal modeling applied over large domains.
Understanding of subsurface fracture opening and closure is of great importance to oil/gas production, geothermal energy extraction, radioactive waste disposal, and carbon sequestration and storage. Fracture opening and closure involve a complex set of thermal, hydrologic, mechanical and chemical (THMC) processes. In this paper, a fully coupled THMC model for fracture opening and closure is formulated by explicitly accounting for the stress concentration on aperture surface, stress-activated mineral dissolution, pressure solution at contacting asperities, and channel flow dynamics. A model analysis, together with reported laboratory observations, shows that a tangential surface stress created by a far-field compressive normal stress may play an important role in controlling fracture aperture evolution in a stressed geologic medium, a mechanism that has not been considered in any existing models. Based on the model analysis, a necessary condition for aperture opening has been derived. The model provides a reasonable explanation for many salient features of fracture evolution in laboratory experiments, including a spontaneous switch from a permeability reduction to a permeability increase in a static limestone experiment. The work may also help develop a new method for estimating in-situ stress in a reservoir.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Understanding subsurface fracture network properties at the field scale is important for a number of environmental and economic problems, including siting of spent nuclear fuel repositories, geothermal exploration, and many others. This typically encompasses large volumes of fractured rocks with the properties inferred from the observations at rock outcrops and, if available, from the measurements in exploratory boreholes, quarries, and tunnels. These data are inherently spatially limited and a stochastic model is required to extrapolate the fracture properties over the large volumes of rocks. This study (1) describes three different methods of generating fracture networks developed for use in the fractured continuum model (FCM) and (2) provides a few examples of how these methods impact the predictions of simulated groundwater transport. A detailed analysis of the transport simulations using FCM is provided in the separate paper by the same authors (to be presented at IHLRWM 2017 conference). FCM is based on the effective continuum approaches modified to represent fractures. The permeability of discrete fractures is mapped onto a regular three-dimensional grid. The x-, y-, and z effective permeability values of a grid block are calculated from the tensor. The tensor parameters are fracture aperture, dip, strike, and number of fractures in the grid block (spacing). All three methods use the fracture properties listed above to generate corresponding permeability fields. However, the assumptions and conceptual representation of fracture network from which these properties are derived are very different. The Sequential Gaussian Simulation (SGSim) method does not require an assumption regarding the fracture shape. Fracture aperture, spacing, and orientation are defined based on the field observations. Spatially correlated features (continuation of fracture in the direction of the orientation) are created using spatially correlated random numbers generated with SGSIM code. With this method an exact number of fractures cannot be generated. The Ellipsim method assumes that the fractures are two-dimensional elliptical shapes that can be described with radius and aspect ratio. The knowledge of the fracture (ellipse) radius probability distribution is required. The fracture aperture is calculated from the ellipse radius. For this option an exact number of fractures can be generated. The fracture networks generated with SGSim and Ellipsim are not necessarily connected. The connectivity is achieved indirectly via matrix permeability that can be viewed as the permeability of much smaller fractions. The discrete fracture network (DFN) generator assumes elliptical fracture shapes and requires the same parameters as Ellipsim. The principal difference is in connectivity. The DFN method creates the fracture network connectivity via an iterative process in which not connected clusters of fractures are removed. The permeability fields were generated with FCM using three different methods and the same fracture data set loosely based on the data from an existing site in granite rocks. A few examples of transport simulations are provided to demonstrate the major findings of the comparison.