Publications

Results 26–50 of 90
Skip to search filters

Simulation and investigation of electrothermal effects in heterojunction bipolar transistors

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Hennigan, Gary L.; Musson, Lawrence M.; Huang, Andy H.; Negoita, Mihai N.

We present a comprehensive physics investigation of electrothermal effects in III-V heterojunction bipolar transistors (HBTs) via extensive Technology Computer Aided Design (TCAD) simulation and modeling. We show for the first time that the negative differential resistances of the common-emitter output responses in InGaP/GaAs HBTs are caused not only by the well-known carrier mobility reduction, but more importantly also by the increased base-To-emitter hole back injection, as the device temperature increases from self-heating. Both self-heating and impact ionization can cause fly-backs in the output responses under constant base-emitter voltages. We find that the fly-back behavior is due to competing processes of carrier recombination and self-heating or impact ionization induced carrier generation. These findings will allow us to understand and potentially improve the safe operating areas and circuit compact models of InGaP/GaAs HBTs.

More Details

Analytic band-to-trap tunneling model including band offset for heterojunction devices

Journal of Applied Physics

Gao, Xujiao G.; Kerr, Bert; Huang, Andy H.

We present an analytic band-to-trap tunneling model based on the open boundary scattering approach. The new model has three major advantages: (i) It includes not only the well-known electric field effect, but more importantly, the effect of heterojunction band offset. This feature allows us to simulate both electric field and band offset enhanced carrier recombination near a heterojunction in heterostructures. (ii) Its analytic form enables straightforward implementation into a parallel Technology Computer Aided Design device and circuit simulators. (iii) The developed method can be used for any potentials which can be approximated to a good degree such that the Schrödinger equation with open boundary conditions results in piecewise analytic wave functions. Simulation results of an InGaP/GaAs heterojunction bipolar transistor (HBT) reveal that the proposed model predicts significantly increased base currents, because the tunneling of holes in the base to traps in the emitter is greatly enhanced by the emitter-base band offset. This finding, which is not captured by existing band-to-trap tunneling models, is consistent with the experimental observation for an InGaP/GaAs HBT after neutron irradiation.

More Details
Results 26–50 of 90
Results 26–50 of 90