Effect of wire material on wire array implosions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
Proposed for publication in Physical Review Special Topics Accelerators and Beams.
Abstract not provided.
Proposed for publication in Physical Review Special Topics Accelerators and Beams.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIP Conference Proceedings
We describe a technique for measuring the pressure and density of a metallic solid, shocklessly compressed to multi-megabar pressure, through x-ray radiography of a magnetically driven, cylindrical liner implosion. Shockless compression of the liner produces material states that correspond approximately to the principal compression isentrope (quasi-isentrope). This technique is used to determine the principal quasi-isentrope of solid beryllium to a peak pressure of 2.4 Mbar from x-ray images of a high current (20 MA), fast (∼100 ns) liner implosion. © 2012 American Institute of Physics.
Abstract not provided.
Physics of Plasmas
Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Mykonos is a linear transformer driver (LTD) pulsed power accelerator currently undergoing testing at Sandia National Laboratories. Mykonos-2, the initial configuration, includes two 1-MA, 200-kV LTD cavities driving a water-filled transmission line terminated by a resistive load. Transmission line and 3D electromagnetic (EM) simulation models of high-current LTD cavities have been developed [D.V. Rose et al. Phys. Rev. ST Accel. Beams 13, 90401 (2010)]. These models have been used to develop an equivalent two-cavity transmission line model of Mykonos-2 using the BERTHA transmission line code. The model explicitly includes 40 bricks per cavity and detailed representations of the water-filled transmission line and resistive load. (A brick consists of two capacitors and a switch connected in series.) This model is compared to 3D EM simulations of the entire accelerator including detailed representations of the individual capacitors and switches in each cavity. Good agreement is obtained between the two simulation models and both models are in good agreement with preliminary data from Mykonos-2. © 2011 IEEE.
Digest of Technical Papers-IEEE International Pulsed Power Conference
An important application for low impedance pulsed power drivers is creating high pressures for shock compression of solids. These experiments are useful for studying material properties under kilobar to megabar pressures. The Z driver at Sandia National Laboratories has been used for such studies on a variety of materials, including heavy water, diamond, and tantalum, to name a few. In such experiments, it is important to prevent shock formation in the material samples. Shocks can form as the sound speed increases with loading; at some depth in the sample a pressure significantly higher than the surface pressure can result. The optimum pressure pulse shape to prevent such shocks depends on the test material and the sample thickness, and is generally not a simple sinusoidal-shaped current as a function of time. A system that can create a variety of pulse shapes would be desirable for testing various materials and sample thicknesses. A large number of relatively fast pulses, combined, could create the widest variety of pulse shapes. Linear transformer driver systems, whose cavities consist of many parallel capacitor-switch circuits, could have considerable agility in pulse shape. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Special Topics Accelerators and Beams
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Physics of Plasmas
Abstract not provided.