Publications

Results 26–50 of 84
Skip to search filters

An evolving effective stress approach to anisotropic distortional hardening

International Journal of Solids and Structures

Lester, Brian T.; Scherzinger, William M.

A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model and examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.

More Details

Flexible Foam Model

Neilsen, Michael K.; Lu, Wei-Yang L.; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

More Details

Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

International Journal for Numerical Methods in Engineering

Lester, Brian T.; Scherzinger, William M.

A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared with other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared with existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton–Raphson method and comparable speed and robustness to a line search augmented scheme. Copyright © 2017 John Wiley & Sons, Ltd.

More Details

Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

International Journal for Numerical Methods in Engineering

Lester, Brian T.; Scherzinger, William M.

Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

More Details

Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

International Journal for Numerical Methods in Engineering

Lester, Brian T.; Scherzinger, William M.

Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

More Details

Unified creep plasticity damage (UCPD) model for rigid polyurethane foams

Conference Proceedings of the Society for Experimental Mechanics Series

Neilsen, Michael K.; Lu, Wei-Yang L.; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

Experiments were performed to characterize the mechanical response of several different rigid polyurethane foams to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant damage, volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be extremely strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a phenomenological Unified Creep Plasticity Damage (UCPD) model was developed to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This paper includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

More Details

Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams

Neilsen, Michael K.; Lu, Wei-Yang L.; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

More Details
Results 26–50 of 84
Results 26–50 of 84