Publications

Results 1–25 of 50
Skip to search filters

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

DelRio, Frank W.; Grutzik, Scott J.; Mook, William M.; Dickens, Sara D.; Kotula, Paul G.; Hintsala, Eric H.; Stauffer, Douglas S.; Boyce, Brad B.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

Coulombic friction in metamaterials to dissipate mechanical energy

Extreme Mechanics Letters

Garland, Anthony G.; Adstedt, Katarina M.; White, Benjamin C.; Mook, William M.; Kaehr, Bryan J.; Jared, Bradley H.; Lester, Brian T.; Leathe, Nicholas L.; Schwaller, Eric; Boyce, Brad B.

Product designs from a wide range of industries such as aerospace, automotive, biomedical, and others can benefit from new metamaterials for mechanical energy dissipation. In this study, we explore a novel new class of metamaterials with unit cells that absorb energy via sliding Coulombic friction. Remarkably, even materials such as metals and ceramics, which typically have no intrinsic reversible energy dissipation, can be architected to provide dissipation akin to elastomers. The concept is demonstrated at different scales (centimeter to micrometer), with different materials (metal and polymer), and in different operating environments (high and low temperatures), all showing substantial dissipative improvements over conventional non-contacting lattice unit cells. Further, as with other ‘programmable’ metamaterials, the degree of Coulombic absorption can be tailored for a given application. An analytic expression is derived to allow rapid first-order optimization. This new class of Coulombic friction energy absorbers can apply broadly to many industrial sectors such as transportation (e.g. monolithic shock absorbers), biomedical (e.g. prosthetics), athletic equipment (e.g. skis, bicycles, etc.), defense (e.g. vibration tolerant structures), and energy (e.g. survivable electrical grid components).

More Details
Results 1–25 of 50
Results 1–25 of 50