A Summary of the Theory and Design Team Efforts for the Sandia Metamaterials Science and Technology Grand Challenge LDRD
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
We have developed a new type of convolute called the Clam Shell MITL (CSMITL) to couple multi-level accelerators to a common load. The CSMITL has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. We report the first experimental results on a CSMITL, which convolutes two disk feeds on the Saturn accelerator into a single disk feed. Experiments with a high impedance electron beam load operating at twice the self-limited impedance of the CSMITL confirm key design features and demonstrate robust operation. © 2011 IEEE.
Proceedings - 2011 International Conference on Electromagnetics in Advanced Applications, ICEAA'11
A first principles calculation for the transfer capacitance of a Beldon cable is carried out by the use of filamentary constant, dipole, quadrupole, and octopole unknown charges placed at the center of each braid wire. Results are compared with full electrostatic simulations and a phenomenological model. © 2011 IEEE.
IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)
In this paper a simple effective-media analysis (including higher-order multipoles) is used to design a single-resonator, negative-index design based on a metal-core, dielectric-shell (MCDS) unit cell. In addition to comparing the performance of the MCDS design to other core-shell negative-index designs, performance trade-offs resulting from the relative positioning of the electric and magnetic modal resonances in the MCDS design are also discussed. © 2011 IEEE.
PIER B
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Antennas and Propagation
Abstract not provided.
IEEE Antennas and Wireless Propagation Letters
Abstract not provided.
IEEE Antennas and Wireless Propagation Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2010 12th International Conference on Electromagnetics in Advanced Applications, ICEAA'10
This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER™ code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case. ©2010 IEEE.
Optics Express
Abstract not provided.
Physical Review Special Topics in Accelerators and Beams
Abstract not provided.
This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER{trademark} code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case.
Abstract not provided.
This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.
IEEE Antennas and Wireless Propagation Letters
Abstract not provided.
Journal of Vacuum Science and Technology B
The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.