Publications

Results 51–69 of 69
Skip to search filters

Dipole radiation from a cylindrical hole in the earth

Warne, Larry K.; Johnson, William Arthur.

This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.

More Details

Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating

Rambo, Patrick K.; Schwarz, Jens S.; Smith, Ian C.; Ashley, Carol S.; Branson, Eric D.; Dunphy, Darren R.; Cook, Adam W.; Reed, Scott T.; Johnson, William Arthur.

In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

More Details

An improved statistical model for linear antenna input impedance in an electrically large cavity

Johnson, William Arthur.; Jorgenson, Roy E.; Warne, Larry K.

This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

More Details

Modeling edge singularities in the method of moments

Johnson, William Arthur.

The authors explore various possible approaches for generating lowest order and higher order bases for modeling surface currents and their divergence for moment method application to integral equations. The bases developed are defined on curved triangular and quadrilateral elements. All the bases are conveniently defined in parent element coordinates, and each expansion function spans one or two patches.

More Details

Capacitance and effective area of flush monopole probes

Basilio, Lorena I.; Warne, Larry K.; Johnson, William Arthur.; Higgins, Matthew B.; Lehr, J.M.

Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

More Details

Approximations to wire grid inductance

Proposed for publication in the Journal of Electrostatics.

Warne, Larry K.; Merewether, Kimball O.; Johnson, William Arthur.

By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.

More Details

Electromagnetic analysis and modeling of the coax-to-triplate transition for the pulse-compression section of the ZR accelerator

Digest of Technical Papers-IEEE International Pulsed Power Conference

Johnson, William Arthur.; Coats, Rebecca S.; Jorgenson, Roy E.; Kotulski, J.D.; Lehr, J.M.; Pasik, Michael F.; Rosenthal, Stephen E.; Turner, C.D.; Warne, Larry K.

Transverse electromagnetic (TEM) wave analysis is used to estimate the efficiencies of the coax to triplate transition in Sandia's Z-20 test module. The structure of both the TEM mode and higher order TE modes in the triplate transmission line are characterized. In addition, three dimensional time domain simulations are carried out and used in conjunction with the modal analysis to provide insight into the wave structure excited in the triplate transmission line.

More Details

Assembly of LIGA using Electric Fields

Feddema, John T.; Warne, Larry K.; Johnson, William Arthur.; Routson, Allison J.; Armour, David L.

The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

More Details

Statistical Properties of Antenna Impedance in an Electrically Large Cavity

IEEE Transactions on Antennas and Propagation

Warne, Larry K.; Hudson, Howard G.; Johnson, William Arthur.; Jorgenson, Roy E.; Stronach, Stephen L.

This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

More Details
Results 51–69 of 69
Results 51–69 of 69