Publications

Results 26–33 of 33
Skip to search filters

On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition

Allendorf, Mark D.; Houf, William G.; McDaniel, Anthony H.

Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

More Details

Glass Furnace Combustion and Melting Research Facility

Houf, William G.; MacDonald, Blake A.

The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition analyzers, optical pyrometers, and a video camera. The output from the instruments is to be continuously recorded and simultaneously made available to other researchers via the Internet. A unique aspect of the research facility would be its access to the expertise in optical measurements in flames and high temperature reacting flows residing in the Sandia Combustion Research Facility. Development of new techniques for monitoring and control of glass melting would be a major focus of the work. The lab would be equipped with conventional and laser light sources and detectors for optical measurements of gas temperature, velocity, and gaseous species and, using new techniques to be developed in the Research Facility itself, glass temperature and glass composition.

More Details

Sensor fusion for intelligent process control

Houf, William G.; Hillaire, Robert G.

An integrated system for the fusion of product and process sensors and controls for production of flat glass was envisioned, having as its objective the maximization of throughput and product quality subject to emission limits, furnace refractory wear, and other constraints. Although the project was prematurely terminated, stopping the work short of its goal, the tasks that were completed show the value of the approach and objectives. Though the demonstration was to have been done on a flat glass production line, the approach is applicable to control of production in the other sectors of the glass industry. Furthermore, the system architecture is also applicable in other industries utilizing processes in which product uniformity is determined by ability to control feed composition, mixing, heating and cooling, chemical reactions, and physical processes such as distillation, crystallization, drying, etc. The first phase of the project, with Visteon Automotive Systems as industrial partner, was focused on simulation and control of the glass annealing lehr. That work produced the analysis and computer code that provide the foundation for model-based control of annealing lehrs during steady state operation and through color and thickness changes. In the second phase of the work, with PPG Industries as the industrial partner, the emphasis was on control of temperature and combustion stoichiometry in the melting furnace, to provide a wider operating window, improve product yield, and increase energy efficiency. A program of experiments with the furnace, CFD modeling and simulation, flow measurements, and sensor fusion was undertaken to provide the experimental and theoretical basis for an integrated, model-based control system utilizing the new infrastructure installed at the demonstration site for the purpose. In spite of the fact that the project was terminated during the first year of the second phase of the work, the results of these first steps toward implementation of model-based control were sufficient to demonstrate the value of the approach to improving the productivity of glass manufacture.

More Details

Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

Chen, Ken S.; Evans, Gregory H.; Larson, Richard S.; Noble, David R.; Houf, William G.

A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

More Details
Results 26–33 of 33
Results 26–33 of 33