Single-Mode Lasing from Top-Down Gallium Nitride Nanowires
Abstract not provided.
Abstract not provided.
Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Photonics Technology Letters
We present a photonic integrated circuit (PIC) composed of two strongly coupled distributed Bragg reflector (DBR) lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz. Mutual injection-locking and external injection-locking operation are compared. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Journal of Modern Optics
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We demonstrate mid-infrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots coupled to surface plasmon modes on metal hole arrays. Subwavelength metal hole arrays with different periodicity are patterned into the top contact of the broadband (9 - 15 μm) quantum dot material and the measured electroluminescence is compared to devices without a metal hole array. The resulting normally directed emission is narrowed and a splitting in the spectral structure is observed. By applying a coupled quantum electrodynamic model and using reasonable values for quantum dot distributions and plasmon linewidths we are able to reproduce the experimentally measured spectral characteristics of device emission when using strong coupling parameters. © 2010 SPIE.
We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.
We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.
IEEE Journal of Quantum Electronics
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Physica Status Solidi
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.
Abstract not provided.
This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.
Abstract not provided.
Nano Letters
Abstract not provided.
Abstract not provided.
Physical Review E
Abstract not provided.
Abstract not provided.
Abstract not provided.
Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.
Abstract not provided.
Abstract not provided.
IEEE Journal of Quantum Electronics
Abstract not provided.
Journal of Modern Optics
Abstract not provided.
Abstract not provided.
Journal of Quantum Electronics IEEE
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Journal of Modern Optics
The emission from a radiating source embedded in a photonic lattice is investigated. The photonic lattice spectrum was found to deviate from the blackbody distribution, with intracavity emission suppressed at certain frequencies and significantly enhanced at others. For rapid population relaxation, where the photonic lattice and blackbody populations are described by the same thermal distribution, it was found that the enhancement does not result in output intensities exceeding those of the blackbody. However, for slow population relaxation, the photonic lattice population has a greater tendency to deviate from thermal equilibrium, resulting in output intensities exceeding those of the blackbody.
A quantum optical approach is proposed and analyzed as a solution to the problem of detecting weak coherent radiation in the presence of a strong incoherent background. The approach is based on the extreme sensitivity of laser dynamical nonlinearities to the coherence of external perturbation. This sensitivity leads to dynamical phase transitions that may be employed for detecting the presence of external coherent radiation. Of particular interest are the transitions between stable and chaotic states of laser operation. Using a baseline scheme consisting of a detector laser operating with a Fabry-Perot cavity, we demonstrated significant qualitative and quantitative differences in the response of the detector laser to the intensity and coherence of the external signal. Bifurcation analysis revealed that considerable modification to the extension of chaotic regions is possible by tailoring active medium and optical resonator configurations. Our calculations showed that with semiconductor lasers, destabilization can occur with a coherent external signal intensity that is over six orders of magnitude smaller than the detector laser's intracavity intensity. Discrimination between coherent and incoherent external signal also looks promising because of the over four orders of magnitude difference in intensity required for inducing chaos-like behavior. These results suggest that the proposed approach may be useful in laser sensor applications, such as satellite Laser Threat Warning Receivers (LTWR).
Proposed for publication in the Applied Physics Letters.
Abstract not provided.
The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.
This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.
Proposed for publication in the European Physical Journal B.
Abstract not provided.