The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.
Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seen as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.
As with other large healthcare organizations, medical adverse events at the Department of Veterans Affairs (VA) facilities can expose patients to unforeseen negative risks. VHA leadership recognizes that properly handled disclosure of adverse events can minimize potential harm to patients and negative consequences for the effective functioning of the organization. The work documented here seeks to help improve the disclosure process by situating it within the broader theoretical framework of issues management, and to identify opportunities for process improvement through modeling disclosure and reactions to disclosure. The computational model will allow a variety of disclosure actions to be tested across a range of incident scenarios. Our conceptual model will be refined in collaboration with domain experts, especially by continuing to draw on insights from VA Study of the Communication of Adverse Large-Scale Events (SCALE) project researchers.