Some new micro-optics fabrication schemes
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
The design and on-going fabrication of an opto-electro-mechanical microsystem that acts as a four-function optical fiber switch will be presented. The four functions of the 2×2 optical switch include 1) Normal mode, where channel A and channel B pass light straight through, 2) Loopback mode, where light originating in channel A is detected in the B leg, 3) Monitor A mode, where a probe pulse is inserted into channel B and any reflections are detected in the A leg, and 4) Monitor B mode, the compliment of 3) above. The Monitor A and Monitor B modes allow the microsystem to operate as an Optical Time Domain Reflectometer (OTDR). High spatial frequency gratings etched in fused silica configure the light beams through free-space substrate-mode propagation. The design for an OTDR-mode transmission grating that normally passes light from an incidence angle of 45 degrees within the silica substrate as well as passes light from a normal incidence straight through the silica will be discussed. A miniature commercial drive motor, positioned with LIGA alignment plates, rotates the optical grating disk into one of the four implemented function positions. The impact of required tolerances and packaging limitations on the optics, LIGA alignment plates, and the complete microsystem will be presented.
A figure of merit for optimization of a complete Stokes polarimeter based on its measurement matrix is described from the standpoint of singular value decomposition and analysis of variance. It is applied to optimize a system featuring a rotatable retarder and fixed polarizer, and to study the effects of non-ideal retarder properties. A retardance of 132{degree} (approximately three-eighths wave) and retarder orientation angles of {+-}51.7{degree} and {+-}15.1{degree} are favorable when four measurements are used. An achromatic, form-birefringent retarder for the 3--5 {micro}m spectral region has been fabricated and characterized. The effects of non-idealities in the form-birefringent retarder are moderate, and performance superior to that of a quarter-wave plate is expected.
Journal of Vacuum Science and Technology B
The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.
This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.
Optics Letters
We present two figures of merit based on singular value decomposition, which can be used to assess the noise immunity of a complete Stokes polarimeter. These are used to optimize a polarimeter featuring a rotatable retarder and a fixed polarizer. A retardance of 132° (approximately three-eighths wave) and retarder orientation angles of ±51.7° and ±15.1° are found to be optimal when four measurements are used. Use of this retardance affords a factor-of-1.5 improvement in signal-to-noise ratio over systems employing a quarter-wave plate. A geometric means of visualizing the optimization process is discussed, and the advantages of the use of additional measurements are investigated. No advantage of using retarder orientation angles spaced uniformly through 360° is found over repeated measurements made at the four retarder orientation angles. © 2000 Optical Society of America .
Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately 50 parts per million (ppm). The possible factors contributing to the differences in LLD for these analytes are discussed. This is the final report for a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) project conducted during fiscal years 1998 and 1999 (case number 3518.190).
Proceedings of SPIE - The International Society for Optical Engineering
We have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. We will discuss the results of these implemented optimizations.