Publications

Results 1–50 of 87
Skip to search filters

Engineering the Quantum Scientific Computing Open User Testbed

IEEE Transactions on Quantum Engineering

Clark, Susan M.; Lobser, Daniel L.; Revelle, Melissa R.; Yale, Christopher G.; Bossert, David B.; Burch, Ashlyn D.; Chow, Matthew N.; Hogle, Craig W.; Ivory, Megan K.; Pehr, Jessica; Salzbrenner, Bradley S.; Stick, Daniel L.; Sweatt, W.C.; Wilson, Joshua M.; Winrow, Edward G.; Maunz, Peter

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.

More Details

High-magnification, long-working distance plenoptic background oriented schlieren (BOS)

AIAA Scitech 2020 Forum

Guildenbecher, Daniel R.; Kunzler, William M.; Sweatt, W.C.; Casper, Katya M.

The design, construction, and testing of a high-magnification, long working-distance plenoptic camera is reported. A plenoptic camera uses a microlens array to enable resolution of the spatial and angular information of the incoming light field. Instantaneous images can be numerically refocused and perspective shifted in post-processing to enable threedimensional (3D) resolution of a scene. Prior to this work, most applications of plenoptic imaging were limited to relatively low magnifications (1× or less) or small working distances. Here, a unique system is developed with enables 5× magnification at a working distance of over a quarter meter. Experimental results demonstrate ~25 µm spatial resolution with 3D imaging capabilities. This technology is demonstrated for 3D imaging of the shock structure in a underexpanded, Mach 3.3 free air jet.

More Details

Hybrid Integration of III-V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules

IEEE Journal of Selected Topics in Quantum Electronics

Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Cruz-Campa, Jose L.; Alford, Charles A.; Sanchez, Carlos A.; Nielson, Gregory N.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Saavedra, Michael; Miller, William; Keeler, Gordon A.; Paap, Scott M.; Mudrick, John; Lentine, Anthony; Resnick, Paul; Gupta, Vipin; Nelson, Jeffrey; Li, Lan; Li, Duanhui; Gu, Tian; Hu, Juejun

The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.

More Details

Photoacoustic Sounds from Meteors

Scientific Reports

Spalding, Richard E.; Tencer, John T.; Sweatt, W.C.; Conley, Benjamin; Hogan, Roy E.; Boslough, Mark B.; Gonzales, Gi G.; Spurný, Pavel

Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with â '11 to â '13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that â '12 brightness meteors can generate audible sound at ∼25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.

More Details

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg N.; Cruz-Campa, Jose L.; Okandan, Murat O.

Abstract not provided.

Microsystem Enabled Photovoltaics

Nielson, Gregory N.; Cruz Campa, Jose L.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin B.; Koleske, Daniel K.; Wierer, Jonathan J.; Miller, William K.; Elisberg, Brenton E.; Zamora, David J.; Luna, Ian L.; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet N.; Anderson, Ben A.; Gu, Tian G.; Agrawal, Gautum A.; Nelson, Jeffrey S.

Abstract not provided.

Photoacoustic Sounds from Meteors

Sandia journal manuscript; Not yet accepted for publication

Spalding, Richard E.; Tencer, John T.; Sweatt, W.C.; Hogan, Roy E.; Boslough, Mark B.; Gonzales, Gi G.

High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

More Details

Camera System Resolution and its Influence on Digital Image Correlation

Experimental Mechanics

Reu, Phillip L.; Sweatt, W.C.; Miller, T.; Fleming, Darryn F.

Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss of spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The paper will demonstrate the tradeoffs associated with limited lens resolution.

More Details

Reduced Silicon Usage in Flat Photo-Voltaic Panels

Sweatt, W.C.; Nielson, Gregory N.; Okandan, Murat O.

Silicon usage in fixed, flat-panel photovoltaic systems can be reduced by 60 to 75% with no efficiency loss through use of arrays of mini-concentrators. These concentrators are simple trough-like reflectors that are formed in flat sheets of ~1- mm thick optical plastic. Concentration ratios of 2.55X can be achieved on rooftops and 4.0X on walls while collecting all of the direct sun and scattered skylight. The concentrators are fabricated in optical plastic— preferably polycarbonate for its high refractive index. The panels are typically 1mm thick so the weight of a panel is ~1kg/m2. In addition to the rooftop, wall and window blind designs, a design is proposed that can be tilted toward the sun position at the equinox. These systems are all designed so they can be mass-produced.

More Details

Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Paap, Scott; Gupta, Vipin P.; Tauke-Pedretti, Anna; Resnick, Paul J.; Sanchez, Carlos A.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Jared, Bradley H.; Nelson, Jeffrey; Okandan, Murat O.; Sweatt, W.C.

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, Janet N.; Alford, Charles A.; Riley, Daniel R.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kratochvil, Jay A.

Abstract not provided.

Advanced compound semiconductor and silicon fabrication techniques for next-generation solar power systems

ECS Transactions

Nielson, Gregory N.; Okandan, Murat O.; Cruz-Campa, Jose L.; Gupta, Vipin P.; Resnick, Paul J.; Sanchez, Carlos A.; Paap, Scott M.; Kim, B.; Sweatt, W.C.; Lentine, Anthony L.; Cederberg, Jeffrey G.; Tauke-Pedretti, Anna; Jared, B.H.; Anderson, Benjamin J.; Biefeld, Robert M.; Nelson, J.S.

Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.

More Details
Results 1–50 of 87
Results 1–50 of 87