Publications

Results 176–200 of 203
Skip to search filters

Merging spatially variant physical process models under an optimized systems dynamics framework

Lowry, Thomas S.; Tidwell, Vincent C.

The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution system (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.

More Details

Integrated system dynamics toolbox for water resources planning

Tidwell, Vincent C.; Malczynski, Leonard A.; Passell, Howard D.; Ballantine, Marissa D.

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

More Details

Laboratory evaluation of time domain reflectometry for continuous monitoring of stream stage, channel profile and aqueous conductivity

Proposed for publication in Water Resources Research.

Tidwell, Vincent C.

Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, and sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts and clays). Taken together, these characteristics provide a basis for integrated stream monitoring, specifically, concurrent measurement of stream stage, channel profile, and aqueous conductivity. Requisite for such application is a means of extracting the desired stream parameters from measured TDR traces. Analysis is complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Debeye parameters for dielectric dispersion and loss is used to analyze acquired TDR traces. Here we explore the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments was performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-} 3.4 x 10{sup -3} m for sensing the location of an air-water or water-sediment interface and {+-} 7.4% of actual for the aqueous conductivity.

More Details

An integrated approach to vulnerability assessment

Tidwell, Vincent C.; Otero, Consuelo J.

How might the quality of a city's delivered water be compromised through natural or malevolent causes? What are the consequences of a contamination event? What water utility assets are at greatest risk to compromise? Utility managers have been scrambling to find answers to these questions since the events of 9/11. However, even before this date utility mangers were concerned with the potential for system contamination through natural or accidental causes. Unfortunately, an integrated tool for assessing both the threat of attack/failure and the subsequent consequence is lacking. To help with this problem we combine Markov Latent Effects modeling for performing threat assessment calculations with the widely used pipe hydraulics/transport code, EPANET, for consequences analysis. Together information from these models defines the risk posed to the public due to natural or malevolent contamination of a water utility system. Here, this risk assessment framework is introduced and demonstrated within the context of vulnerability assessment for water distribution systems.

More Details

Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR)

Tidwell, Vincent C.; Roberts, Jesse D.; Coombs, Jason R.; Ruby, Douglas S.

Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system under normal field conditions. At the Rio Grande site (near Central Bridge in Albuquerque, New Mexico) continuous monitoring of stream stage and aqueous conductivity was performed for 6 months. Additionally, channel profile measurements were acquired at 7 locations across the river. At the Paria site (near Lee's Ferry, Arizona) stream stage and aqueous conductivity data were collected over a 4-month period. Comparisons drawn between our TDR measurements and USGS gage data indicate that the stream stage is accurate within {+-}0.88 cm, conductivity is accurate within {+-}11% of actual, and channel profile measurements agree within {+-}1.2 cm.

More Details

Modeling the transfer of land and water from agricultural to urban uses in the Middle Rio Grande Basin, New Mexico

McNamara, Laura A.; Kobos, Peter H.; Malczynski, Leonard A.; Tidwell, Vincent C.

Social and ecological scientists emphasize that effective natural resource management depends in part on understanding the dynamic relationship between the physical and non-physical process associated with resource consumption. In this case, the physical processes include hydrological, climatological and ecological dynamics, and the non-physical process include social, economic and cultural dynamics among humans who do the resource consumption. This project represents a case study aimed at modeling coupled social and physical processes in a single decision support system. In central New Mexico, individual land use decisions over the past five decades have resulted in the gradual transformation of the Middle Rio Grande Valley from a primarily rural agricultural landscape to a largely urban one. In the arid southwestern U.S., the aggregate impact of individual decisions about land use is uniquely important to understand, because scarce hydrological resources will likely limit the viability of resulting growth and development trajectories. This decision support tool is intended to help planners in the area look forward in their efforts to create a collectively defined 'desired' social landscape in the Middle Rio Grande. Our research question explored the ways in which socio-cultural values impact decisions regarding that landscape and associated land use. Because of the constraints hydrological resources place on land use, we first assumed that water use, as embodied in water rights, was a reasonable surrogate for land use. We thought that modeling the movement of water rights over time and across water source types (surface and ground) would provide planners with insight into the possibilities for certain types of decisions regarding social landscapes, and the impact those same decisions would have on those landscapes. We found that water rights transfer data in New Mexico is too incomplete and inaccurate to use as the basis for the model. Furthermore, because of its lack of accuracy and completeness, water rights ownership was a poor indicator of water and land usage habits and patterns. We also found that commitment among users in the Middle Rio Grande Valley is to an agricultural lifestyle, not to a community or place. This commitment is conditioned primarily by generational cohort and past experience. If conditions warrant, many would be willing to practice the lifestyle elsewhere. A related finding was that sometimes the pressure to sell was not the putative price of the land, but the taxes on the land. These taxes were, in turn, a function of the level of urbanization of the neighborhood. This urbanization impacted the quality of the agricultural lifestyle. The project also yielded some valuable lessons regarding the model development process. A facilitative and collaborative style (rather than a top-down, directive style) was most productive with the inter-disciplinary , inter-institutional team that worked on the project. This allowed for the emergence of a process model which combined small, discipline- and/or task-specific subgroups with larger, integrating team meetings. The project objective was to develop a model that could be used to run test scenarios in which we explored the potential impact of different policy options. We achieved that objective, although not with the level of success or modeling fidelity which we had hoped for. This report only describes very superficially the results of test scenarios, since more complete analysis of scenarios would require more time and effort. Our greatest obstacle in the successful completion of the project was that required data were sparse, of poor quality, or completely nonexistent. Moreover, we found no similar modeling or research efforts taking place at either the state or local level. This leads to a key finding of this project: that state and local policy decisions regarding land use, development, urbanization, and water resource allocation are being made with minimal data and without the benefit of economic or social policy analysis.

More Details

Data collection for cooperative water resources modeling in the Lower Rio Grande Basin, Fort Quitman to the Gulf of Mexico

Tidwell, Vincent C.; Ennis, Martha L.

Water resource scarcity around the world is driving the need for the development of simulation models that can assist in water resources management. Transboundary water resources are receiving special attention because of the potential for conflict over scarce shared water resources. The Rio Grande/Rio Bravo along the U.S./Mexican border is an example of a scarce, transboundary water resource over which conflict has already begun. The data collection and modeling effort described in this report aims at developing methods for international collaboration, data collection, data integration and modeling for simulating geographically large and diverse international watersheds, with a special focus on the Rio Grande/Rio Bravo. This report describes the basin, and the data collected. This data collection effort was spatially aggregated across five reaches consisting of Fort Quitman to Presidio, the Rio Conchos, Presidio to Amistad Dam, Amistad Dam to Falcon Dam, and Falcon Dam to the Gulf of Mexico. This report represents a nine-month effort made in FY04, during which time the model was not completed.

More Details
Results 176–200 of 203
Results 176–200 of 203