Publications

Results 126–150 of 203
Skip to search filters

Energy and water in the Great Lakes

Tidwell, Vincent C.

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

More Details

Energy-water analysis of the 10-year WECC transmission planning study cases

Tidwell, Vincent C.; Passell, Howard D.

In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

More Details

Assessing the Near-Term Risk of Climate Uncertainty:Interdependencies among the U.S. States

Backus, George A.; Trucano, Timothy G.; Robinson, David G.; Adams, Brian M.; Richards, Elizabeth H.; Siirola, John D.; Boslough, Mark B.; Taylor, Mark A.; Conrad, Stephen H.; Kelic, Andjelka; Roach, Jesse D.; Warren, Drake E.; Ballantine, Marissa D.; Stubblefield, W.A.; Snyder, Lillian A.; Finley, Ray E.; Horschel, Daniel S.; Ehlen, Mark E.; Klise, Geoffrey T.; Malczynski, Leonard A.; Stamber, Kevin L.; Tidwell, Vincent C.; Vargas, Vanessa N.; Zagonel, Aldo A.

Abstract not provided.

Biofuel impacts on water

Tidwell, Vincent C.; Sun, Amy C.; Malczynski, Leonard A.

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

More Details

Biofuel impacts on water

Tidwell, Vincent C.

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

More Details

Modeling the near-term risk of climate uncertainty : interdependencies among the U.S. states

Backus, George A.; Warren, Drake E.; Tidwell, Vincent C.

Decisions made to address climate change must start with an understanding of the risk of an uncertain future to human systems, which in turn means understanding both the consequence as well as the probability of a climate induced impact occurring. In other words, addressing climate change is an exercise in risk-informed policy making, which implies that there is no single correct answer or even a way to be certain about a single answer; the uncertainty in future climate conditions will always be present and must be taken as a working-condition for decision making. In order to better understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, this study estimates the impacts from responses to climate change on U.S. state- and national-level economic activity by employing a risk-assessment methodology for evaluating uncertain future climatic conditions. Using the results from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report (AR4) as a proxy for climate uncertainty, changes in hydrology over the next 40 years were mapped and then modeled to determine the physical consequences on economic activity and to perform a detailed 70-industry analysis of the economic impacts among the interacting lower-48 states. The analysis determines industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. The conclusions show that the average risk of damage to the U.S. economy from climate change is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Further analysis shows that an increase in uncertainty raises this risk. This paper will present the methodology behind the approach, a summary of the underlying models, as well as the path forward for improving the approach.

More Details

Energy and water in the Western and Texas interconnects

Tidwell, Vincent C.

The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between Western Electricity Coordinating Council, Electric Reliability Council of Texas, Western Governors Association, and Western States Water Council. (3) Exercise the Energy-Water DSS to investigate water transmission planning scenarios.

More Details
Results 126–150 of 203
Results 126–150 of 203