Publications

Results 51–100 of 203
Skip to search filters

Mapping water consumption for energy production around the Pacific Rim

Environmental Research Letters

Tidwell, Vincent C.; Moreland, Barbie

World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

More Details

Analysis of High Plains Resource Risk and Economic Impacts

Tidwell, Vincent C.; Vargas, Vanessa N.; Jones, Shannon M.; Dealy, Bern C.; Shaneyfelt, Calvin S.; Smith, Braeton J.; Moreland, Barbie

The importance of the High Plains Aquifer is broadly recognized as is its vulnerability to continued overuse. T his study e xplore s how continued depletions of the High Plains Aquifer might impact both critical infrastructure and the economy at the local, r egional , and national scale. This analysis is conducted at the county level over a broad geographic region within the states of Kansas and Nebraska. In total , 140 counties that overlie the High Plains Aquifer in these two states are analyzed. The analysis utilizes future climate projections to estimate crop production. Current water use and management practices are projected into the future to explore their related impact on the High Plains Aquifer , barring any changes in water management practices, regulat ion, or policy. Finally, the impact of declining water levels and even exhaustion of groundwater resources are projected for specific sectors of the economy as well as particular elements of the region's critical infrastructure.

More Details

Integrated Human Futures Modeling in Egypt

Passell, Howard D.; Passell, Howard D.; Aamir, Munaf S.; Aamir, Munaf S.; Bernard, Michael L.; Bernard, Michael L.; Beyeler, Walter E.; Beyeler, Walter E.; Fellner, Karen M.; Fellner, Karen M.; Hayden, Nancy K.; Hayden, Nancy K.; Jeffers, Robert F.; Jeffers, Robert F.; Keller, Elizabeth J.; Keller, Elizabeth J.; Malczynski, Leonard A.; Malczynski, Leonard A.; Mitchell, Michael D.; Mitchell, Michael D.; Silver, Emily S.; Silver, Emily S.; Tidwell, Vincent C.; Tidwell, Vincent C.; Villa, Daniel V.; Villa, Daniel V.; Vugrin, Eric D.; Vugrin, Eric D.; Engelke, Peter E.; Engelke, Peter E.; Burrow, Mat B.; Burrow, Mat B.; Keith, Bruce K.; Keith, Bruce K.

The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on water availability in the Nile Basin over the longer term. Depending on the GERD fill rate, short-term (e.g., within its first 5 years of operation) annual losses in Egyptian food production may peak briefly at 25 percent. Long-term (e.g., 15 to 30 year) cumulative losses in Egypt's food production may be less than 3 percent regardless of the fill rate, with the GERD having essentially no impact on projected annual food production in Egypt about 25 years after opening. For the quick fill rates, the short-term losses may be sufficient to create an important decrease in overall household health among the general population, which, along with other economic stressors and different strategies employed by the government, could lead to social unrest. Third, and perhaps most importantly, our modeling suggests that the GERD's effect on Egypt's food and water resources is small when compared to the effect of projected Egyptian population and economic growth (and the concomitant increase in water consumption). The latter dominating factors are exacerbated in the modeling by natural climate variability and may be further exacerbated by climate change. Our modeling suggests that these growth dynamics combine to create long-term water scarcity in Egypt, regardless of the Ethiopian project. All else being equal, filling strategies that employ slow fill rates for the GERD (e.g., 8 to 13 years) may mitigate the risks in future scenarios for Egypt somewhat, but no policy or action regarding the GERD is likely to significantly alleviate the projected water scarcity in Egypt's Nile Basin. However, general beliefs among the Egyptian populace regarding the GERD as a major contributing factor for scarcities in Egypt could make Ethiopia a scapegoat for Egyptian grievances -- contributing to social unrest in Egypt and generating undesirable (and unnecessary) tension between these two countries. Such tension could threaten the constructive relationships between Egypt and Ethiopia that are vital to maintaining stability and security within and between their respective regional spheres of influence, Middle East and North Africa, and the Horn of Africa.

More Details

Mapping the Energy-Water Nexus around the Pacific Rim

Tidwell, Vincent C.; Moreland, Barbie

The energy-water nexus has been mapped for almost 12,000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Water consumption for energy production was estimated for 9 different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; and, energy processing including oil and biofuels. Conversely, the energy consumed providing water services was mapped for three sectors, drinking water, waste water and seawater desalination. These measures of resource use were put in context by drawing comparison with published measures of water risk. The objective of the mapping was to quantify the energy-water nexus and its variability at the subnational level, pinpoint potential vulnerabilities, and identify opportunities for international collaboration.

More Details

Climate Induced Spillover and Implications for U.S. Security

Tidwell, Vincent C.; Naugle, Asmeret B.; Backus, George A.; Lott, Kathryn M.; Keller, Elizabeth J.; Kobos, Peter H.; Villa, Daniel V.

Developing nations incur a greater risk to climate change than the developed world due to poorly managed human/natural resources, unreliable infrastructure and brittle governing/economic institutions. These vulnerabilities often give rise to a climate induced “domino effect” of reduced natural resource production-leading to economic hardship, social unrest, and humanitarian crises. Integral to this cascading set of events is increased human migration, leading to the “spillover” of impacts to adjoining areas with even broader impact on global markets and security. Given the complexity of factors influencing human migration and the resultant spill-over effect, quantitative tools are needed to aid policy analysis. Toward this need, a series of migration models were developed along with a system dynamics model of the spillover effect. The migration decision models were structured according to two interacting paths, one that captured long-term “chronic” impacts related to protracted deteriorating quality of life and a second focused on short-term “acute” impacts of disaster and/or conflict. Chronic migration dynamics were modeled for two different cases; one that looked only at emigration but at a national level for the entire world; and a second that looked at both emigration and immigration but focused on a single nation. Model parameterization for each of the migration models was accomplished through regression analysis using decadal data spanning the period 1960-2010. A similar approach was taken with acute migration dynamics except regression analysis utilized annual data sets limited to a shorter time horizon (2001-2013). The system dynamics spillover model was organized around two broad modules, one simulating the decision dynamics of migration and a second module that treats the changing environmental conditions that influence the migration decision. The environmental module informs the migration decision, endogenously simulating interactions/changes in the economy, labor, population, conflict, water, and food. A regional model focused on Mali in western Africa was used as a test case to demonstrate the efficacy of the model.

More Details

Planning for the Electricity-Water Nexus

Sandia journal manuscript; Not yet accepted for publication

Tidwell, Vincent C.

Energy production requires water, while the conveyance, storage, and treatment of water requires energy—this is the energy-water nexus. The importance of this nexus has recently been highlighted by droughts reducing hydropower production, heat waves impacting stream water temperatures forcing nuclear and coal-fired power plants to suspend operations, floods and hurricanes damaging energy infrastructure, and the denial of new power plant permits due to limited water availability. All this while the energy intensity of the water sector is increasing as water is moved from more distant locations and increasing water treatment is required. Tackling this energy-water nexus will require significant coordination between water and energy managers from the local to the federal level.

More Details

Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

Tidwell, Vincent C.; Wolfsberg, Andrew W.; Macknick, Jordan M.; Middleton, Richard M.

In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

More Details

System Dynamics Modeling of the Colorado Basin for Optimizing Operations Reducing Risk and Increasing Resiliency

Lowry, Thomas S.; Kobos, Peter H.; Malczynski, Leonard A.; Tidwell, Vincent C.; Roach, Jesse D.; McMahon, Kevin A.

This paper is the output from SNL's involvement in the Western Area Power Administration (WAPA), the Colorado River Energy Distributors Association (CREDA), and the Upper Colo rado River Commission's (UCRC) sponsored Phase II work to establish market and non - market valu es (NMV's) of water and hydropower asso ciated with Glen Canyon Dam (GCD) operations and the Colorado River ecosystem. It describes the purpose and need to develop a systems model for the Colorado River Basin that includes valuations in the economic, hydrologic, environmental, social, and cultural sectors . It outlines the benefits and unique features associated with such a model and provides a roadmap of how a syste ms model would be developed and implemented. While not meant to serve as a full development plan, the ideas and concepts herein represent what the Sandia National Laboratories (SNL) research team believes is the most impac tful and effective path forward to address an ever increasing complex set of problems that occur at the basin - scale and beyond .

More Details

Geographic footprint of electricity use for water services in the western U.S

Environmental Science and Technology

Tidwell, Vincent C.; Moreland, Barbie; Zemlick, Katie

A significant fraction of our nation's electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. To improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. This study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. Results indicate that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. These results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load. © 2014 American Chemical Society.

More Details

Nationwide water availability data for energy-water modeling

Tidwell, Vincent C.; Klise, Geoffrey T.

The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

More Details
Results 51–100 of 203
Results 51–100 of 203