Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 1011 cm-2, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.
As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T≤800 ° C process to prepare clean Si0.86Ge0.14 surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T=0.3 K show that the doped heterostructure has R□=570±30Ω, yielding an electron density ne=2.1±0.1×1014cm-2 and mobility μe=52±3cm2V-1s-1, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of μe and the complete absence of Shubnikov-de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. This conclusion is supported by self-consistent Schrödinger-Poisson calculations that predict electron occupation primarily in the donor layer.
Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si0.8Ge0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regions in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.
High-mobility two-dimensional (2D) holes residing in a Ge quantum well are a new electronic system with potentials in quantum computing and spintronics. Since for any electronic material, the effective mass and the g factor are two fundamental material parameters that determine the material response to electric and magnetic fields, measuring these two parameters in this material system is thus an important task that needs to be completed urgently. Because of the quantum confinement in the crystal growth direction (z), the biaxial strain of epitaxial Ge on SiGe, and the valance band nature, both the effective mass and the g factor can show very strong anisotropy. In particular, the in-plane g factor (gip) can be vanishingly small while the perpendicular g factor (gz) can be much larger than 2. Here we report the measurement of gip at very low hole densities using in-plane magneto-resistance measurement performed at the NHMFL.