Publications

Results 51–100 of 173
Skip to search filters

Thermoelectric transport of the half-filled lowest Landau level in a p-type Ge/SiGe heterostructure

Physical Review B

Liu, Xiaoxue; Lu, Tzu-Ming L.; Harris, Charles T.; Lu, Fang L.; Liu, Chia Y.; Li, Jiun Y.; Liu, Chee W.; Du, Rui R.

We investigate the thermoelectric transport properties of the half-filled lowest Landau level v=1/2 in a gated two-dimensional hole system in a strained Ge/SiGe heterostructure. The electron-diffusion dominated regime is achieved below 600 mK, where the diffusion thermopower Sxxd at v=1/2 shows a linear temperature dependence. In contrast, the diffusion-dominated Nernst signal Sxyd of v=1/2 is found to approach zero, which is independent of the measurement configuration (sweeping magnetic field at a fixed hole density or sweeping the density by a gate at a fixed magnetic field).

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Proceedings of SPIE - The International Society for Optical Engineering

Katzenmeyer, Aaron M.; Dmitrovic, S.; Baczewski, Andrew D.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, S.W.; Ivie, J.A.; Campbell, DeAnna M.; Ward, D.R.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with sub-nanometer precision, typically for quantum physics demonstrations, and to dope silicon past the solid-solubility limit, with potential applications in microelectronics and plasmonics. However, this process, which we call atomic precision advanced manufacturing (APAM), currently lacks the throughput required to develop sophisticated applications because there is no proven scalable hydrogen lithography pathway. Here, we demonstrate and characterize an APAM device workflow where STM lithography has been replaced with photolithography. An ultraviolet laser is shown to locally heat silicon controllably above the temperature required for hydrogen depassivation. STM images indicate a narrow range of laser energy density where hydrogen has been depassivated, and the surface remains well-ordered. A model for photothermal heating of silicon predicts a local temperature which is consistent with atomic-scale STM images of the photo-patterned regions. Finally, a simple device made by exposing photo-depassivated silicon to phosphine is found to have a carrier density and mobility similar to that produced by similar devices patterned by STM.

More Details

Designer quantum materials

Misra, Shashank M.; Ward, Daniel R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schmucker, Scott W.; Mounce, Andrew M.; Tracy, Lisa A.; Lu, Tzu-Ming L.; Marshall, Michael T.; Campbell, DeAnna M.

Quantum materials have long promised to revolutionize everything from energy transmission (high temperature superconductors) to both quantum and classical information systems (topological materials). However, their discovery and application has proceeded in an Edisonian fashion due to both an incomplete theoretical understanding and the difficulty of growing and purifying new materials. This project leverages Sandia's unique atomic precision advanced manufacturing (APAM) capability to design small-scale tunable arrays (designer materials) made of donors in silicon. Their low-energy electronic behavior can mimic quantum materials, and can be tuned by changing the fabrication parameters for the array, thereby enabling the discovery of materials systems which can't yet be synthesized. In this report, we detail three key advances we have made towards development of designer quantum materials. First are advances both in APAM technique and underlying mechanisms required to realize high-yielding donor arrays. Second is the first-ever observation of distinct phases in this material system, manifest in disordered 2D sheets of donors. Finally are advances in modeling the electronic structure of donor clusters and regular structures incorporating them, critical to understanding whether an array is expected to show interesting physics. Combined, these establish the baseline knowledge required to manifest the strongly-correlated phases of the Mott-Hubbard model in donor arrays, the first step to deploying APAM donor arrays as analogues of quantum materials.

More Details

Creation of nanoscale magnetic fields using nano-magnet arrays

AIP Advances

Sapkota, Keshab R.; Eley, S.; Bussmann, Ezra B.; Harris, C.T.; Maurer, Leon M.; Lu, Tzu-Ming L.

We present the fabrication of nano-magnet arrays, comprised of two sets of interleaving SmCo5 and Co nano-magnets, and the subsequent development and implementation of a protocol to program the array to create a one-dimensional rotating magnetic field. We designed the array based on the microstructural and magnetic properties of SmCo5 films annealed under different conditions, also presented here. Leveraging the extremely high contrast in coercivity between SmCo5 and Co, we applied a sequence of external magnetic fields to program the nano-magnet arrays into a configuration with alternating polarization, which based on simulations creates a rotating magnetic field in the vicinity of nano-magnets. Our proof-of-concept demonstration shows that complex, nanoscale magnetic fields can be synthesized through coercivity contrast of constituent magnetic materials and carefully designed sequences of programming magnetic fields.

More Details

Electron mobility enhancement in an undoped Si/SiGe heterostructure by remote carrier screening

Journal of Applied Physics

Su, Yi H.; Chou, Kuan Y.; Chuang, Yen; Lu, Tzu-Ming L.; Li, Jiun Y.

We investigate the effects of surface tunneling on electrostatics and transport properties of two-dimensional electron gases (2DEGs) in undoped Si/SiGe heterostructures with different 2DEG depths. By varying the gate voltage, four stages of density-mobility dependence are identified with two density saturation regimes observed, which confirms that the system transitions between equilibrium and nonequilibrium. Mobility is enhanced with an increasing density at low biases and, counterintuitively, with a decreasing density at high biases as well. The density saturation and mobility enhancement can be semiquantitatively explained by a surface tunneling model in combination with a bilayer screening theory.

More Details

Single and double hole quantum dots in strained Ge/SiGe quantum wells

Nanotechnology

Hardy, Will H.; Harris, C.T.; Su, Yi H.; Chuang, Yen; Moussa, Jonathan; Maurer, Leon M.; Li, Jiun Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

Even as today's most prominent spin-based qubit technologies are maturing in terms of capability and sophistication, there is growing interest in exploring alternate material platforms that may provide advantages, such as enhanced qubit control, longer coherence times, and improved extensibility. Recent advances in heterostructure material growth have opened new possibilities for employing hole spins in semiconductors for qubit applications. Undoped, strained Ge/SiGe quantum wells are promising candidate hosts for hole spin-based qubits due to their low disorder, large intrinsic spin-orbit coupling strength, and absence of valley states. Here, we use a simple one-layer gated device structure to demonstrate both a single quantum dot as well as coupling between two adjacent quantum dots. The hole effective mass in these undoped structures, m∗ ∼ 0.08 m 0, is significantly lower than for electrons in Si/SiGe, pointing to the possibility of enhanced tunnel couplings in quantum dots and favorable qubit-qubit interactions in an industry-compatible semiconductor platform.

More Details

Gate-defined quantum dots in Ge/SiGe quantum wells as a platform for spin qubits

ECS Transactions

Hardy, Will H.; Su, Y.H.; Chuang, Y.; Maurer, L.N.; Brickson, M.; Baczewski, Andrew D.; Li, J.Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

In the field of semiconductor quantum dot spin qubits, there is growing interest in leveraging the unique properties of hole-carrier systems and their intrinsically strong spin-orbit coupling to engineer novel qubits. Recent advances in semiconductor heterostructure growth have made available high quality, undoped Ge/SiGe quantum wells, consisting of a pure strained Ge layer flanked by Ge-rich SiGe layers above and below. These quantum wells feature heavy hole carriers and a cubic Rashba-type spin-orbit interaction. Here, we describe progress toward realizing spin qubits in this platform, including development of multi-metal-layer gated device architectures, device tuning protocols, and charge-sensing capabilities. Iterative improvement of a three-layer metal gate architecture has significantly enhanced device performance over that achieved using an earlier single-layer gate design. We discuss ongoing, simulation-informed work to fine-tune the device geometry, as well as efforts toward a single-spin qubit demonstration.

More Details
Results 51–100 of 173
Results 51–100 of 173