Polarimetric Synthetic-Aperture-Radar Change-Type Classification with a Hyperparameter-Free Open-Set Classifier
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Advancements in machine learning (ML) and deep learning (DL) have enabled imaging systems to perform complex classification tasks, opening numerous problem domains to solutions driven by high quality imagers coupled with algorithmic elements. However, current ML and DL methods for target classification typically rely upon algorithms applied to data measured by traditional imagers. This design paradigm fails to enable the ML and DL algorithms to influence the sensing device itself, and treats the optimization of the sensor and algorithm as separate sequential elements. Additionally, this current paradigm narrowly investigates traditional images, and therefore traditional imaging hardware, as the primary means of data collection. We investigate alternative architectures for computational imaging systems optimized for specific classification tasks, such as digit classification. This involves a holistic approach to the design of the system from the imaging hardware to algorithms. Techniques to find optimal compressive representations of training data are discussed, and most-useful object-space information is evaluated. Methods to translate task-specific compressed data representations into non-traditional computational imaging hardware are described, followed by simulations of such imaging devices coupled with algorithmic classification using ML and DL techniques. Our approach allows for inexpensive, efficient sensing systems. Reduced storage and bandwidth are achievable as well since data representations are compressed measurements which is especially important for high data volume systems.
Journal of Applied Remote Sensing
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple and fast models to label track pixels. These models, however, are unable to capture natural track features, such as continuity and parallelism. More powerful but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3×3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate in low power and have limited training data. As a result, we aim for small and efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our six-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.
Abstract not provided.
Abstract not provided.
Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988, up fr om 0.907 obtained by the current state-of-the-art method.
IEEE Geoscience and Remote Sensing Letters
We present an approach to segment vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times. The approach uses multiscale higher order random field models to capture track statistics, such as curvatures and their parallel nature, that are not currently utilized in existing methods. These statistics are encoded as 3-by-3 patterns at different scales. The model can complete disconnected tracks often caused by sensor noise and various environmental effects. Coupling the model with a simple classifier, our approach is effective at segmenting salient tracks. We improve the F-measure on a standard vehicle track data set to 0.963, up from 0.897 obtained by the current state-of-the-art method.
Abstract not provided.
The Data Inferencing on Semantic Graphs project (DISeG) was a two-year investigation of inferencing techniques (focusing on belief propagation) to social graphs with a focus on semantic graphs (also called multi-layer graphs). While working this problem, we developed a new directed version of inferencing we call Directed Propagation (Chapters 2 and 4), identified new semantic graph sampling problems (Chapter 3).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record - Asilomar Conference on Signals, Systems and Computers
Coherent change detection (CCD) can indicate subtle scene changes in synthetic aperture radar (SAR) imagery, such as vehicle tracks. Automatic track detection in SAR CCD is difficult due to various sources of low coherence other than the track activity we wish to detect. Existing methods require user cues or explicit modeling of track structure, which limit algorithms' ability to find tracks that do not fit the model. In this paper, we present a track detection approach based on a pixel-level labeling of the image via a conditional random field classifier, with features based on radial derivatives of local Radon transforms. Our approach requires no modeling of track characteristics and no user input, other than a training phase for the unary cost of the conditional random field. Experiments show that our method can successfully detect both parallel and single tracks in SAR CCD as well as correctly declare when no tracks are present.
Frontiers in Neuroscience
The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Influence spread is an important phenomenon that occurs in many social networks. Influence maximization is the corresponding problem of finding the most influential nodes in these networks. In this paper, we present a new influence diffusion model, based on pairwise factor graphs, that captures dependencies and directions of influence among neighboring nodes.We use an augmented belief propagation algorithm to efficiently compute influence spread on this model so that the direction of influence is preserved. Due to its simplicity, the model can be used on large graphs with high-degree nodes, making the influence maximization problem practical on large, real-world graphs. Using large Flixster and Epinions datasets, we provide experimental results showing that our model predictions match well with ground-truth influence spreads, far better than other techniques. Furthermore, we show that the influential nodes identified by our model achieve significantly higher influence spread compared to other popular models. The model parameters can easily be learned from basic, readily available training data. In the absence of training, our approach can still be used to identify influential seed nodes.
IS and T International Symposium on Electronic Imaging Science and Technology
Coherent change detection (CCD) images, which are prod- ucts of combining two synthetic aperture radar (SAR) images taken at different times of the same scene, can reveal subtle sur- face changes such as those made by tire tracks. These images, however, have low texture and are noisy, making it difficult to au- Tomate track finding. Existing techniques either require user cues and can only trace a single track or make use of templates that are difficult to generalize to different types of tracks, such as those made by motorcycles, or vehicles sizes. This paper presents an approach to automatically identify vehicle tracks in CCD images. We identify high-quality track segments and leverage the con- strained Delaunay triangulation (CDT) to find completion track segments. We then impose global continuity and track smoothness using a binary random field on the resulting CDT graph to determine edges that belong to real tracks. Experimental results show that our algorithm outperforms existing state-of-the- Art techniques in both accuracy and speed.
Abstract not provided.
2015 4th Berkeley Symposium on Energy Efficient Electronic Systems, E3S 2015 - Proceedings
As transistors start to approach fundamental limits and Moore's law slows down, new devices and architectures are needed to enable continued performance gains. New approaches based on RRAM (resistive random access memory) or memristor crossbars can enable the processing of large amounts of data[1, 2]. One of the most promising applications for RRAM crossbars is brain inspired or neuromorphic computing[3, 4].
Abstract not provided.
Abstract not provided.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Combining multiple synthetic aperture radar (SAR) images taken at different times of the same scene produces coherent change detection (CCD) images that can detect small surface changes such as tire tracks. The resulting CCD images can be used in an automated approach to identify and label tracks. Existing techniques have limited success due to the noisy nature of these CCD images. In particular, existing techniques require some user cues and can only trace a single track. This paper presents an approach to automatically identify and label multiple tracks in CCD images. We use an explicit objective function that utilizes the Bayesian information criterion to find the simplest set of curves that explains the observed data. Experimental results show that it is capable of identifying tracks under various scenes and can correctly declare when no tracks are present.
Abstract not provided.