Publications

Results 26–50 of 85
Skip to search filters

Estimation of transport and kinetic parameters of vanadium redox batteries using static cells

ECS Transactions

Lee, Seong B.; Pratt, Harry P.; Anderson, Travis M.; Mitra, Kishalay; Chalamala, Babu C.; Subramanian, Venkat R.

Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the models through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. This paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.

More Details

MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids

Advanced Sustainable Systems

Small, Leo J.; Pratt, Harry P.; Staiger, Chad S.; Anderson, Travis M.

We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.

More Details

Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors

Molecular Informatics

Martin, Shawn; Pratt, Harry P.; Anderson, Travis M.

We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.

More Details

Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4

Small, Leo J.; Pratt, Harry P.; Staiger, Chad S.; Martin, Rachel I.; Anderson, Travis M.; Chalamala, Babu C.; Soundappan, Thiagarajan S.; Tiwari, Monika T.; Subarmanian, Venkat R.

We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

More Details

Monitoring of CoS2 reactions using high-temperature XRD coupled with gas chromatography (GC)

Powder Diffraction

Rodriguez, Mark A.; Coker, Eric N.; Griego, James J.M.; Mowry, Curtis D.; Pimentel, Adam S.; Anderson, Travis M.

High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K2SO4 that subsequently reacted with the pyrite-type CoS2 phase leading to cathode decomposition between ∼260 and 450 °C. Independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS2 decomposition. Both gas analysis measurements (i.e. GC and MS) from the independent experiments confirmed the formation of SO2 off-gas species during breakdown of the CoS2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS2 throughout the entire temperature range of analysis.

More Details

Diels alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

Journal of the Electrochemical Society

Small, Leo J.; Pratt, Harry P.; Fujimoto, Cy F.; Anderson, Travis M.

Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3-10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. Improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

More Details

In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids

Electrochimica Acta

Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; Sell, Julia C.; Pratt, Harry P.; Anderson, Travis M.; Meulenberg, Robert W.

In situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques are applied to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarly coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. We suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.

More Details

Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

Fenton, Kyle R.; Nagasubramanian, Ganesan N.; Staiger, Chad S.; Pratt, Harry P.; Rempe, Susan R.; Leung, Kevin L.; Chaudhari, Mangesh I.; Anderson, Travis M.

This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

More Details
Results 26–50 of 85
Results 26–50 of 85