Modeling the shock hugoniot in porous materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIP Conference Proceedings
We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon.We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Dynamic Behavior of Materials
A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. The limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B - Condensed Matter and Materials Physics
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics: Conference Series
Density Functional Theory (DFT) based molecular dynamics has been established as a method capable of yielding high fidelity results for many materials at a wide range of pressures and temperatures and has recently been applied to complex polymers such as polyethylene, compounds such as ethane or CO2, and oxides such as MgO. We use this method to obtain a Grïneisen Γ and thereby build a Mie-Grüneisen equation of state (EOS) and a Rice-Walsh EOS for tantalum pentoxide (Ta2O5 or tantala) and compare to experimental data. The experimental data have initial densities (ρ00) of approximately 1.13, 3, and 7.4 g/cm 3 reduced from a crystalline of 8.36 g/cm3. We found that r becomes constant at higher temperatures and pressure, but is a function of both density and temperature at lower densities and temperatures. Finally, the Mie-Gruneisen EOS is adequate for modeling the slightly distended Hugoniot with an initial density of 7.4 g/cm3 however it is inadequate for the more porous Hugoniot, while the Rice-Walsh EOS combined with a P-λ crush model approximates the experimental data quite well. © Published under licence by IOP Publishing Ltd.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.