Publications

Results 26–50 of 117
Skip to search filters

Polycapillary x-ray lenses for single-shot, laser-driven powder diffraction

Review of Scientific Instruments

Schollmeier, Marius; Ao, Tommy A.; Field, Ella S.; Galloway, B.R.; Kalita, Patricia K.; Kimmel, Mark W.; Morgan, D.V.; Rambo, Patrick K.; Schwarz, Jens S.; Shores, J.E.; Smith, Ian C.; Speas, C.S.; Benage, John F.; Porter, John L.

X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.

More Details

X-Ray Diffraction Measurements on Laser-Compressed Polycrystalline Samples Using a Short-Pulse Laser Generated X-Ray Source

Schollmeier, Marius; Ao, Tommy A.; Field, Ella S.; Galloway, B.R.; Kalita, Patricia K.; Kimmel, Mark W.; Long, Joel L.; Morgan, Dane D.; Rambo, Patrick K.; Schwarz, Jens S.; Seagle, Christopher T.

Existing models for most materials do not describe phase transformations and associated lattice dy- namics (kinetics) under extreme conditions of pressure and temperature. Dynamic x-ray diffraction (DXRD) allows material investigations in situ on an atomic scale due to the correlation between solid-state structures and their associated diffraction patterns. In this LDRD project we have devel- oped a nanosecond laser-compression and picosecond-to-nanosecond x-ray diffraction platform for dynamically-compressed material studies. A new target chamber in the Target Bay in building 983 was commissioned for the ns, kJ Z-Beamlet laser (ZBL) and the 0.1 ns, 250 J Z-Petawatt (ZPW) laser systems, which were used to create 8-16 keV plasma x-ray sources from thin metal foils. The 5 ns, 15 J Chaco laser system was converted to a high-energy laser shock driver to load material samples to GPa stresses. Since laser-to-x-ray energy conversion efficiency above 10 keV is low, we employed polycapillary x-ray lenses for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. Polycapillary lenses enabled diffraction measurements up to 16 keV with ZBL as well as diffraction experiments with ZPW. This x-ray diffraction platform supports experiments that are complementary to gas guns and the Z facility due to different strain rates. Ultimately, there is now a foundation to evaluate DXRD techniques and detectors in-house before transferring the technology to Z. This page intentionally left blank.

More Details

Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

Nature Communications

Li, Binsong; Bian, Kaifu B.; Lane, J.M.; Salerno, K.M.; Grest, Gary S.; Ao, Tommy A.; Hickman, Randy J.; Wise, Jack L.; Wang, Zhongwu; Fan, Hongyou F.

Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

More Details

Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions

Grant, Sean C.; Ao, Tommy A.; Davis, Jean-Paul D.; Dolan, Daniel H.; Seagle, Christopher T.; Lin, Jung-Fu L.; Bernstein, Aaron B.

The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

More Details

The Sandia Matlab AnalysiS Hierarchy (SMASH) toolbox

Dolan, Daniel H.; Ao, Tommy A.; Grant, Sean C.

The SMASH (Sandia Matlab AnalysiS Hierarchy) toolbox is a collection of MATLAB code for data analysis. The toolbox contains general purpose functions, custom class defini- tions, and self-contained programs aimed at the needs of experimental physicists working in pulsed power research. The initial release (version 1.0) supports file access, signal/image analysis, and user interface creation; custom graphics and generic system tools are also pro- vided. Much of the package is object oriented, encouraging users to build new capabilities from established classes. Future releases will continue this goal, expanding capabilities and streamlining application development.

More Details

Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

High Energy Density Physics

Ao, Tommy A.; Harding, Eric H.; Bailey, James E.; Lemke, Raymond W.; Desjarlais, Michael P.; Hansen, Stephanie B.; Smith, Ian C.; Geissel, Matthias G.; Maurer, A.; Reneker, Joseph R.; Romero, D.; Sinars, Daniel S.; Rochau, G.A.; Benage, John F.

Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.

More Details
Results 26–50 of 117
Results 26–50 of 117