Publications

Results 101–150 of 167
Skip to search filters

Electrochemical Solution Growth of Magnetic Nitrides

Monson, Todd M.; Pearce, Charles J.

Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

More Details

Ga lithography in sputtered niobium for superconductive micro and nanowires

Applied Physics Letters

Henry, M.D.; Wolfley, Steven L.; Monson, Todd M.; Lewis, Rupert

This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 μm by 10 μm and 100 μm by 100 μm, demonstrate that doses above than 7.5 × 1015cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 μm long connected to 50 μm wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (Tc) = 7.7 K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi. © 2014 AIP Publishing LLC.

More Details

Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

Nanoscale Research Letters

Taylor, Robert M.; Monson, Todd M.; Gullapalli, Rama R.

Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a 'green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization. PACS: 81.07.-b; 75.75.Fk; 61.46.Df © 2014 Taylor et al.; licensee Springer.

More Details
Results 101–150 of 167
Results 101–150 of 167