Publications

Results 151–175 of 195
Skip to search filters

Top-down fabrication of GaN-based nanorod LEDs and lasers

Proceedings of SPIE - The International Society for Optical Engineering

Wang, George T.; Li, Qiming L.; Wierer, Jonathan W.; Figiel, J.J.; Wright, Jeremy B.; Luk, Ting S.; Brener, Igal B.

Although planar heterostructures dominate current optoelectronic architectures, 1D nanowires and nanorods have distinct and advantageous properties that may enable higher efficiency, longer wavelength, and cheaper devices. We have developed a top-down approach for fabricating ordered arrays of high quality GaN-based nanorods with controllable height, pitch and diameter. This approach avoids many of the limitations of bottom-up synthesis methods. In addition to GaN nanorods, the fabrication and characterization of both axial and radial-type GaN/InGaN nanorod LEDs have been achieved. The precise control over nanorod geometry achiveable by this technique also enables single-mode single nanowire lasing with linewidths of less than 0.1 nm and low lasing thresholds of ∼250kW/cm 2. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

More Details

A Summary of the Theory and Design Team Efforts for the Sandia Metamaterials Science and Technology Grand Challenge LDRD

Basilio, Lorena I.; Brener, Igal B.; Burckel, David B.; Shaner, Eric A.; Wendt, J.R.; Luk, Ting S.; Ellis, A.R.; Bender, Daniel A.; Clem, Paul G.; Rasberry, Roger D.; Langston, William L.; Ihlefeld, Jon I.; Dirk, Shawn M.; Warne, Larry K.; Peters, D.W.; El-Kady, I.; Reinke, Charles M.; Loui, Hung L.; Williams, Jeffery T.; Sinclair, Michael B.; McCormick, Frederick B.

Abstract not provided.

Single-mode lasing from top-down fabricated gallium nitride nanowires

IEEE Photonic Society 24th Annual Meeting, PHO 2011

Wright, J.B.; Li, Q.M.; Luk, Ting S.; Brener, Igal B.; Wang, George T.; Westlake, K.R.; Lester, L.F.

We study lasing in individual top-down fabricated GaN nanowires by optical pumping. We observe single mode emission with a side mode suppression of 15 dB, linewidths of less than 1 nm and thresholds as low as 250 kW/cm 2. © 2011 IEEE.

More Details

Hyperspectral imaging of microalgae using two-photon excitation

Jones, Howland D.; Sinclair, Michael B.; Luk, Ting S.; Collins, Aaron M.; Garcia, Omar F.; Melgaard, David K.; Timlin, Jerilyn A.; Reichardt, Thomas A.

A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.

More Details

Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities

Fischer, Arthur J.; Subramania, Ganapathi S.; Lee, Yun-Ju L.; Koleske, Daniel K.; Li, Qiming L.; Wang, George T.; Luk, Ting S.; Fullmer, Kristine W.

The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

More Details

Novel photonic crystal cavities and related structures

Luk, Ting S.

More Details

Large-area metallic photonic lattices for military applications

Luk, Ting S.

In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

More Details
Results 151–175 of 195
Results 151–175 of 195