Single Mode GaN Nanowire Lasers
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Although planar heterostructures dominate current optoelectronic architectures, 1D nanowires and nanorods have distinct and advantageous properties that may enable higher efficiency, longer wavelength, and cheaper devices. We have developed a top-down approach for fabricating ordered arrays of high quality GaN-based nanorods with controllable height, pitch and diameter. This approach avoids many of the limitations of bottom-up synthesis methods. In addition to GaN nanorods, the fabrication and characterization of both axial and radial-type GaN/InGaN nanorod LEDs have been achieved. The precise control over nanorod geometry achiveable by this technique also enables single-mode single nanowire lasing with linewidths of less than 0.1 nm and low lasing thresholds of ∼250kW/cm 2. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Photonic Society 24th Annual Meeting, PHO 2011
We study lasing in individual top-down fabricated GaN nanowires by optical pumping. We observe single mode emission with a side mode suppression of 15 dB, linewidths of less than 1 nm and thresholds as low as 250 kW/cm 2. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.
SMALL
Abstract not provided.
Abstract not provided.
Abstract not provided.
The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.
Abstract not provided.
Abstract not provided.
Electrochemical Society (ESC) Transactions
Abstract not provided.
In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Optics Express.
A 100-GW optical parametric chirped-pulse amplifier system is used to study nonlinear effects in the 1.54 {micro}m regime. When focusing this beam in air, strong third-harmonic generation (THG) is observed, and both the spectra and efficiency are measured. Broadening is observed on only the blue side of the third-harmonic signal and an energy conversion efficiency of 0.2% is achieved. When propagated through a 10-cm block of fused silica, a collimated beam is seen to collapse and form multiple filaments. The measured spectral features span 400-2100 nm. The spectrum is dominated by previously unobserved Stokes emissions and broad emissions in the visible.
Optics InfoBase Conference Papers
Optical parametric chirped-pulse amplifiers utilizing a 300-ps Nd:YAG pump system, a tunable 1.6-μm fiber signal, and KNbO3, KTA, RTP, or BBO nonlinear crystals were designed and built. Gain >109, and peak powers >30GW were obtained. © 2005 Optical Society of America.
Terahertz radiation from optically-induced plasmas on metal, semiconductor, and dielectric surfaces is compared to electron-hole plasma radiation from GaAs and Ge. Electro-optic sampling and electric-field probes measure radiated field waveforms and distributions to 0.350 THz.
At Sandia National Laboratories, miniaturization dominates future hardware designs, and technologies that address the manufacture of micro-scale to nano-scale features are in demand. Currently, Sandia is developing technologies such as photolithography/etching (e.g. silicon MEMS), LIGA, micro-electro-discharge machining (micro-EDM), and focused ion beam (FIB) machining to fulfill some of the component design requirements. Some processes are more encompassing than others, but each process has its niche, where all performance characteristics cannot be met by one technology. For example, micro-EDM creates highly accurate micro-scale features but the choice of materials is limited to conductive materials. With silicon-based MEMS technology, highly accurate nano-scale integrated devices are fabricated but the mechanical performance may not meet the requirements. Femtosecond laser processing has the potential to fulfill a broad range of design demands, both in terms of feature resolution and material choices, thereby improving fabrication of micro-components. One of the unique features of femtosecond lasers is the ability to ablate nearly all materials with little heat transfer, and therefore melting or damage, to the surrounding material, resulting in highly accurate micro-scale features. Another unique aspect to femtosecond radiation is the ability to create localized structural changes thought nonlinear absorption processes. By scanning the focal point within transparent material, we can create three-dimensional waveguides for biological sensors and optical components. In this report, we utilized the special characteristics of femtosecond laser processing for microfabrication. Special emphasis was placed on the laser-material interactions to gain a science-based understanding of the process and to determine the process parameter space for laser processing of metals and glasses. Two areas were investigated, including laser ablation of ferrous alloys and direct-write optical waveguides and integrated optics in bulk glass. The effects of laser and environmental parameters on such aspects as removal rate, feature size, feature definition, and ablation angle during the ablation process of metals were studied. In addition, the manufacturing requirements for component fabrication including precision and reproducibility were investigated. The effect of laser processing conditions on the optical properties of direct-written waveguides and an unusual laser-induced birefringence in an optically isotropic glass are reported. Several integrated optical devices, including a Y coupler, directional coupler, and Mach-Zehnder interferometer, were made to demonstrate the simplicity and flexibility of this technique in comparison to the conventional waveguide fabrication processes.
Optics Letters
The spatial, spectral and temporal properties of self-focusing 798-nm 100-fs pulses in air were experimentally measured. It was measured using high-resolution, single-shot techniques at a set propagation distance of 10.91 m. The data were taken over an extended energy range and can thus be used to test the validity of physical models. The experimental results show that significant spatial, spectral and temporal changes occur at intensities lower than than those required for strong ionization of air.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Journal of Physics B: Atomic, Molecular and Optical Physics
Stable self-channelling of ultra-powerful (P0 ∼ 1 TW-1 PW) laser pulses in dense plasmas is a key process for many applications requiring the controlled compression of power at high levels. Theoretical computations predict that the transition zone between the stable and highly unstable regimes of relativistic/charge-displacement self-channelling is well characterized by a form of weak instability that involves bifurcation of the propagating energy into two channels. Recent observations of unstable behaviour with femtosecond 248 nm pulses reveal a mode of bifurcation that corresponds well to these theoretical predictions. It is further experimentally shown that the use of a suitable longitudinal gradient in the plasma density can eliminate this unstable response and restore the efficient formation of single stable channels.
Technical Digest - Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, QELS 2001
Summary form only given. It has been shown in 3 + 1 dimensional Kerr-nonlinearity self-focusing models, that group velocity dispersion is responsible for the temporal pulse-splitting of ultrashort pulses during propagation. Previous experiments have demonstrated pulse splitting due to the Kerr nonlinearity for short pulse propagation in bulks or gaseous media. However, studies in gaseous media are often in a focused geometry, or use pressurized gaseous media. This experiment elucidates the relationship between pulse splitting and spot-size change and does not use any optic to initiate self-focusing. We find pulse splitting occurs at a distance merely 0.7x the diffraction length and occurs before spatial collapse to a filament. In addition, multiple pulse splitting is also observed. Peak fluence information from the beam-profile is monitored, indicating nonlinear loss mechanisms. We believe this is the first data on multiple pulse-splitting events in air.
Technical Digest - Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, QELS 2001
Summary form only given. Numerous groups have demonstrated that tabletop high peak power femtosecond lasers are capable of inducing nonlinear self-focused propagation in atmosphere at 800 nm. The phenomenon unfailingly exhibits (1) light concentration in long single or multiple filaments of the order of 150 μm diameter and tens of meters in length; (2) conical emission associated with these filaments has a considerably wider spectral content than the original laser pulse. Conical emission became apparent after the filaments were formed. While the divergence angle of these conical emissions has been studied, unfortunately there is no reasonable model proposed that can qualitatively describe (Brodeur et al, 1996; Nibbering et al, 1996) even the most basic features such as divergence angles of the different colors. Furthermore, the color ordering of these conical emissions can be changed upon changing the chirp of the launched pulse. In this paper, we present conical emission data to show its behavior as the pulse is chirped. In addition, we also present the spectral distribution of the conical emissions and how it depends on chirp. Finally, we compare our result with numerical result of Gaeta (Phys. Rev. Lett. vol. 84, pp. 3582-3585, 2000).
Abstract not provided.
Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.
UV filaments in air have been examined on the basis of the diameter and length of the filament, the generation of new spectral components, and the ionization by multiphoton processes. There have been numerous observations of filaments at 800 nm. The general perception is that, above a critical power, the beam focuses because nonlinear self-lensing overcomes diffraction. The self-focusing proceeds until an opposing higher order nonlinearity forms a stable balance.