Publications

Results 51–75 of 100
Skip to search filters

Transient and Steady-State Inverse Problems in Sierra/Aria

Wagman, Ellen B.; Kurzawski, Andrew K.; Bunting, Gregory B.; Walsh, Timothy W.; Aquino, Wilkins A.; Brunini, Victor B.

Inverse problems arise in a wide range of applications, whenever unknown model parameters cannot be measured directly. Instead, the unknown parameters are estimated using experimental data and forward simulations. Thermal inverse problems, such as material characterization problems, are often large-scale and transient. Therefore, they require intrusive adjoint-based gradient implementations in order to be solved efficiently. The capability to solve large-scale transient thermal inverse problems using an adjoint-based approach was recently implemented in SNL Sierra Mechanics, a massively parallel capable multiphysics code suite. This report outlines the theory, optimization formulation, and path taken to implement thermal inverse capabilities in Sierra within a unit test framework. The capability utilizes Sierra/Aria and Sierra/Fuego data structures, the Rapid Optimization Library, and an interface to the Sierra/InverseOpt library. The existing Sierra/Aria time integrator is leveraged to implement a time-dependent adjoint solver.

More Details

Development of a Generalized Residual Stress Inversion Technique

Johnson, Kyle J.; Bishop, Joseph E.; Reu, Phillip L.; Walsh, Timothy W.; Farias, Paul A.; Jared, Bradley H.; Susan, D.F.; Rouse, Jerry W.; Whetten, Shaun R.; Chen, Mark J.; Aquino, Wilkins A.; Bellotti, Aurelio B.; Jacobs, Laurence J.

Residual stress is a common result of manufacturing processes, but it is one that is often overlooked in design and qualification activities. There are many reasons for this oversight, such as lack of observable indicators and difficulty in measurement. Traditional relaxation-based measurement methods use some type of material removal to cause surface displacements, which can then be used to solve for the residual stresses relieved by the removal. While widely used, these methods may offer only individual stress components or may be limited by part or cut geometry requirements. Diffraction-based methods, such as X-ray or neutron, offer non-destructive results but require access to a radiation source. With the goal of producing a more flexible solution, this LDRD developed a generalized residual stress inversion technique that can recover residual stresses released by all traction components on a cut surface, with much greater freedom in part geometry and cut location. The developed method has been successfully demonstrated on both synthetic and experimental data. The project also investigated dislocation density quantification using nonlinear ultrasound, residual stress measurement using Electronic Speckle Pattern Interferometry Hole Drilling, and validation of residual stress predictions in Additive Manufacturing process models.

More Details

Experimental study of vibration isolation in thin-walled structural assemblies with embedded total-internal-reflection metasurfaces

Journal of Sound and Vibration

Zhu, Hongfei; Walsh, Timothy W.; Semperlotti, Fabio

The concept of total-internal-reflection elastic metasurface (TIR-MS)was recently proposed [1]and employed within flexible planar waveguides in order to create highly subwavelength sound-hard barriers impenetrable to low frequency elastic waves. The underlying physical mechanism relies on the design of engineered interfaces exhibiting extreme phase gradients such that any incoming wave at, approximately, any incidence will experience total-internal-reflection conditions. At the design frequency, the metasurface exhibits a large phase gradient such that, in accordance with the generalized Snell's law, the first critical angle is virtually always exceeded. It is worth noting that in practical realizations, the actual total reflection performance might vary depending on the angle of incidence. This dependence is due to the discrete implementation of the metasurface which results in diffraction effects. This paper presents the results of an experimental study that explores the vibration isolation performance of TIR-MS when applied to structures made of complex combinations of different elastic waveguides (e.g. bolted assemblies of beams, plates, and shells). Such system can be seen as a prototypical structure emulating mechanical assemblies of practical interest for many engineering applications. Experimental results confirm that, when the TIR-MS is embedded in the host waveguide, significant vibration isolation capabilities are achieved under quasi-omnidirectional incidence and highly subwavelength excitation conditions (i.e. the ratio of the operating wavelength to the width of the TIR-MS is approximately 5.25). These experimental results suggest new interesting directions to achieve vibration isolation and mechanical energy filtering for practical engineering systems.

More Details

A gradient-based optimization approach for the detection of partially connected surfaces using vibration tests

Computer Methods in Applied Mechanics and Engineering

Aquino, Wilkins A.; Bunting, Gregory B.; Miller, Scott T.; Walsh, Timothy W.

The integrity of engineering structures is often compromised by embedded surfaces that result from incomplete bonding during the manufacturing process, or initiation of damage from fatigue or impact processes. Examples include delaminations in composite materials, incomplete weld bonds when joining two components, and internal crack planes that may form when a structure is damaged. In many cases the areas of the structure in question may not be easily accessible, thus precluding the direct assessment of structural integrity. In this paper, we present a gradient-based, partial differential equation (PDE)-constrained optimization approach for solving the inverse problem of interface detection in the context of steady-state dynamics. An objective function is defined that represents the difference between the model predictions of structural response at a set of spatial locations, and the experimentally measured responses. One of the contributions of our work is a novel representation of the design variables using a density field that takes values in the range [0,1]andraised and raised to an integer exponent that promotes solutions to be near the extrema of the range. The density field is combined with the penalty method for enforcing a zero gap condition and realizing partially bonded surfaces. The use of the penalty method with a density field representation leads to objective functions that are continuously differentiable with respect to the unknown parameters, enabling the use of efficient gradient-based optimization algorithms. Numerical examples of delaminated plates are presented to demonstrate the feasibility of the approach.

More Details

Inverse methods for characterization of contact areas in mechanical systems

Conference Proceedings of the Society for Experimental Mechanics Series

Fronk, Matthew; Eschen, Kevin; Starkey, Kyle; Kuether, Robert J.; Brink, Adam R.; Walsh, Timothy W.; Aquino, Wilkins A.; Brake, Matthew

In computational structural dynamics problems, the ability to calibrate numerical models to physical test data often depends on determining the correct constraints within a structure with mechanical interfaces. These interfaces are defined as the locations within a built-up assembly where two or more disjointed structures are connected. In reality, the normal and tangential forces arising from friction and contact, respectively, are the only means of transferring loads between structures. In linear structural dynamics, a typical modeling approach is to linearize the interface using springs and dampers to connect the disjoint structures, then tune the coefficients to obtain sufficient accuracy between numerically predicted and experimentally measured results. This work explores the use of a numerical inverse method to predict the area of the contact patch located within a bolted interface by defining multi-point constraints. The presented model updating procedure assigns contact definitions (fully stuck, slipping, or no contact) in a finite element model of a jointed structure as a function of contact pressure computed from a nonlinear static analysis. The contact definitions are adjusted until the computed modes agree with experimental test data. The methodology is demonstrated on a C-shape beam system with two bolted interfaces, and the calibrated model predicts modal frequencies with <3% total error summed across the first six elastic modes.

More Details

Comparison of time-domain objective functions in dynamic fixture optimization

Conference Proceedings of the Society for Experimental Mechanics Series

Starr, Michael J.; Walsh, Timothy W.

Differences in impedance are usually observed when components are tested in fixtures at lower levels of assembly from those in which they are fielded. In this work, the Kansas City National Security Campus (KCNSC) test bed hardware geometry is used to explore the sensitivity of the form of the objective function on the adequate reproduction of relevant response characteristics at the next level of assembly. Inverse methods within Sandia National Laboratories’ Sierra/SD code suite along with the Rapid Optimization Library (ROL) are used for identifying an unknown material (variable shear and bulk modulus) distributed across a predefined fixture volume. Comparisons of the results between time-domain based objective functions are presented. The development of the objective functions, solution sensitivity, and solution convergence will be discussed in the context of the practical considerations required for creating a realizable set of test hardware based on the variable-modulus optimized solutions.

More Details

Total-internal-reflection elastic metasurfaces: Design and application to structural vibration isolation

Applied Physics Letters

Zhu, Hongfei; Walsh, Timothy W.; Semperlotti, Fabio

This letter presents the concept of the Total Internal Reflection metasurface (TIR-MS) which supports the realization of structure-embedded subwavelength acoustic shields for elastic waves propagating in thin waveguides. The proposed metasurface design exploits extreme phase gradients, implemented via locally resonant elements, in order to achieve operating conditions that are largely beyond the critical angle. Such artificial discontinuity is capable of producing complete reflection of the incoming waves regardless of the specific angle of incidence. From a practical perspective, the TIR-MS behaves as a sound hard barrier that is impenetrable to long-wavelength modes at a selected frequency. The TIR metasurface concept is first conceived for a flat interface embedded in a rectangular waveguide and designed to block longitudinal S0-type guided modes. Then, it is extended to circular plates in order to show how enclosed areas can be effectively shielded by incoming waves. Given the same underlying physics, an equivalent dynamic behavior was also numerically and experimentally illustrated for flexural A0-type guided modes. This study shows numerical and experimental evidence that, when the metasurface is excited at the target frequency, significant vibration isolation can be achieved in the presence of waves having any arbitrary angle of incidence. These results open interesting paths to achieve vibration isolation and energy filtering in certain prototypical structures of interest for practical engineering applications.

More Details
Results 51–75 of 100
Results 51–75 of 100