Water dispersion modeling and diagnostics for water slug impact test
Abstract not provided.
Abstract not provided.
An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.
An experimental program is being conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal is to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. This report documents the first stage of the program, in which simulant liquids are used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward from a tube into brine. The experiment consists of a large transparent vessel that is a scale model of the proposed oil injection process at the SPR. An oil layer is floated on top of a brine layer. Silicon oil (Dow Corning 200{reg_sign} Fluid, 5 cSt) is used as the simulant for crude oil to allow visualization of the flow and to avoid flammability and related concerns. Sodium nitrate solution is used as the simulant for brine because it is not corrosive and it can match the density ratio between brine and crude oil. The oil is injected downward through a tube into the brine at a prescribed depth below the oil-brine interface. Flow rates are determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface is deflected upward by the impinging oil-brine plume. Two different diameter injection tubes were used (1/2-inch and 1-inch OD) to vary the scaling. Use of the 1-inch injection tube also assured that turbulent pipe flow was achieved, which was questionable for lower flow rates in the 1/2-inch tube. In addition, a 1/2-inch J-tube was used to direct the buoyant jet upwards rather than downwards to determine whether flow redirection could substantially reduce the oil-plume size and the oil-droplet residence time in the brine. Reductions of these quantities would inhibit emulsion formation by limiting the contact between the oil and the brine. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern. Image-processing analyses were performed to quantify the penetration depth of the oil jet, the width of the jet, and the deflection of the interface. The measured penetration depths are shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model provided a good estimate of the measured values for the 1-inch injection tube but overpredicted the penetration depth for the 1/2-inch injection tube. Adding a virtual origin term would improve the prediction for the 1/2-inch tube for low to nominal injection flow rates but could not capture the rollover seen at high injection flow rates. As expected, the J-tube yielded a much narrower plume because the flow was directed upward, unlike the downward-oriented straight-tube cases where the plume had to reverse direction, leading to a much wider effective plume area. Larger surface deflections were caused by the narrower plume emitted from the J-tube. Although velocity was not measured in these experiments, the video data showed that the J-tube plume was clearly faster than those emitted from the downward-oriented tubes. These results indicate that oil injection tube modifications could inhibit emulsion formation by reducing the amount of contact (both time and area) between the oil and the brine. Future studies will employ crude oil, saturated brine, and interfacial solids (sludge) from actual SPR caverns.
Abstract not provided.
Abstract not provided.
Proposed for publication in Powder Technology.
Abstract not provided.
Abstract not provided.
International Journal of Multiphase Flow
Experiments are presented in which electrical-impedance tomography (EIT) and gamma-densitometry tomography (GDT) measurements were combined to simultaneously measure the solid, liquid, and gas radial distributions in a vertical three-phase flow. The experimental testbed was a 19.05-cm diameter bubble column in which gas is injected at the bottom and exits out the top while the liquid and solid phases recirculate. The gas phase was air and the liquid phase was deionized water with added electrolytes. Four different particle classes were investigated for the solid phase: 40--100 {micro}m and 120--200 {micro}m glass beads (2.41 g/cm{sup 3}), and 170--260 {micro}m and 200--700 {micro}m polystyrene beads (1.04 g/cm{sup 3}). Superficial gas velocities of 3 to 30 cm/s and solid volume fractions up to 0.30 were examined. For all experimental conditions investigated, the gas distribution showed only a weak dependence on both particle size and density. Average gas volume fraction as a function of superficial gas velocity can be described to within {+-} 0.04 by curve passing through the center of the data. For most cases the solid particle appeared to be radically uniformly dispersed in the liquid.
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.