Publications

Results 1–50 of 67

Search results

Jump to search filters

Compact Diffusion Bonded Heat Exchanger Fatigue Life Simulations (Final Report)

Koehler, Timothy P.

Compact diffusion bonded heat exchangers are essential for high pressure heat exchange, but they are subject to thermal fatigue and ramp rate limitations. Simulation of these geometries is challenging with a large range of length and time scales from thousands of mm-sized microchannels inside a m-sized heat exchanger. Multi-physics simulations including thermal, fluid, and solid mechanics components are being used to predict stress within the heat exchangers under these conditions. These predictions can then be used to understand thermal ramp rate limitations while keeping maximum stresses low as well as fatigue life predictions from well-known empirical models.

More Details

Gas-Induced Motion of a Piston in a Vibrated Liquid-Filled Housing

Journal of Fluids Engineering

Torczynski, John R.; Hern, Jonathan R.'.; Clausen, Jonathan; Koehler, Timothy P.

We present that models and experiments are developed to investigate how a small amount of gas can cause large rectified motion of a piston in a vibrated liquid-filled housing when piston drag depends on piston position so that damping is nonlinear even for viscous flow. Two bellows serve as surrogates for the upper and lower gas regions maintained by Bjerknes forces. Without the bellows, piston motion is highly damped. With the bellows, the piston, the liquid, and the two bellows move together so that almost no liquid is forced through the gaps between the piston and the housing. This Couette mode has low damping and a strong resonance: the piston and the liquid vibrate against the spring formed by the two bellows (like the pneumatic spring formed by the gas regions). Near this resonance, the piston motion becomes large, and the nonlinear damping produces a large rectified force that pushes the piston downward against its spring suspension. A recently developed model based on quasi-steady Stokes flow is applied to this system. A drift model is developed from the full model and used to determine the equilibrium piston position as a function of vibration amplitude and frequency. Corresponding experiments are performed for two different systems. In the two-spring system, the piston is suspended against gravity between upper and lower springs. Lastly, in the spring-stop system, the piston is pushed up against a stop by a lower spring. Model and experimental results agree closely for both systems and for different bellows properties.

More Details

Gas-kinetic simulation of sustained turbulence in minimal Couette flow

Physical Review Fluids

Gallis, Michael A.; Torczynski, John R.; Bitter, Neal; Koehler, Timothy P.; Plimpton, Steven J.; Papadakis, George

Here, we provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re = 500 . The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. Finally, these results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures.

More Details

Molecular-Level Simulations of Turbulence and Its Decay

Physical Review Letters

Gallis, Michael A.; Bitter, Neal; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.; Papadakis, G.

We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.

More Details

Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

Physical Review Fluids

Gallis, Michael A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

The Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.

More Details

Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

Physics of Fluids

Gallis, Michael A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.

More Details

Stochastic Particle Real Time Analyzer (SPARTA) Validation and Verification Suite

Gallis, Michael A.; Koehler, Timothy P.; Plimpton, Steven J.

This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo (DSMC) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation, etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.). Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by analytical solutions and theory. A number of additional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well-established codes or theoretical predictions. This compilation of test cases is not exhaustive, and it is anticipated that more cases will be added in the future.

More Details

Surface rheology and interface stability

Mondy, Lisa A.; Brooks, Carlton F.; Grillet, Anne M.; Moffat, Harry K.; Koehler, Timothy P.; Yaklin, Melissa A.; Cote, Raymond O.; Castaeda, Jaime N.

We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk fluid.

More Details
Results 1–50 of 67
Results 1–50 of 67