Publications

Results 201–215 of 215
Skip to search filters

Cadmium amido alkoxide and alkoxide precursors for the synthesis of nanocrystalline CdE (E=S,Se, Te)

Proposed for publication in Chemistry of Materials.

Boyle, Timothy J.

The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR{sub 2}){sub 2} where NR{sub 2} = N(SiMe{sub 3}){sub 2} with n HOR led to the isolation of the following: n = 1 [Cd({mu}-OCH{sub 2}CMe{sub 3})(NR{sub 2})(py)]{sub 2} (1, py = pyridine), Cd[({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6){sub 2}Cd(NR{sub 2})(py)]{sub 2} (2), [Cd({mu}-OC{sub 6}H{sub 3}(CHMe{sub 2}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (3), [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (4), [Cd({mu}-OC{sub 6}H{sub 2}(NH{sub 2}){sub 3}-2,4,6)(NR{sub 2})(py)]{sub 2} (5), and n = 2 [Cd({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(py){sub 2}]{sub 2} (6), and [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(THF)]{sub 2} (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR{sub 2} or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four {mu}-OR and two terminal -NR{sub 2} ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by {sup 1}H, {sup 13}C, and {sup 113}Cd NMR along with solid-state {sup 113}Cd NMR spectroscopy. The utility of these complexes as 'alternative precursors' for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.

More Details

Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries

Boyle, Timothy J.; Segall, Judith M.; Cherry, Brian R.; Butler, Paul C.; Alam, Todd M.; Tallant, David T.; Malizia, Louis A.; Rodriguez, Marko A.; Ingersoll, David I.; Clark, Nancy H.; Garcia, Manuel J.; Simpson, Regina L.

Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. The precipitate was further identified by solid state {sup 27}Al MAS NMR data to possess predominantly octahedral A1 metal center which implies {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n} must undergo some internal rearrangements. A reaction sequence has been proposed to account for the various molecular species identified in this complex reaction mixture during the aging process. The metallurgical welds were of high quality. These results were all visually determined there was no mechanical testing performed. However, it is recommended that the end plate geometry and weld be changed. If the present weld strength, based on .003' - .005' penetration, is sufficient for unit performance, the end plate thickness can be reduced to .005' instead of the .020' thickness. This will enable the plug to be stamped so that it can form a cap rather than a plug and solve existing problems and increase the amount of catholyte which may be beneficial to battery performance.

More Details

Combined x-ray/neutron Rietveld refinement of Ln-doped PZT perovskites

Rodriguez, Marko A.; Rodriguez, Marko A.; Boyle, Timothy J.; Tuttle, Bruce T.

Combined XRD/neutron Rietveld refinements were performed on PbZr{sub 0.30}Ti{sub 0.70}O{sub 3} powder samples doped with nominally 4% Ln (where Ln = Ce, Nd, Tb, Y, or Yb). Resulting refined structural parameters indicated that the lattice parameters and volume changes in the tetragonal perovskite unit cell were consistent with A and/or B-site doping of the structure. Ce doping is inconsistent with respect to its rather large atomic radius, but is understood in terms of its oxidation to the Ce{sup +4} oxidation state in the structure. Results of the B-site displacement values for the Ti/Zr site indicate that amphoteric doping of Ln cations in the structure results in superior properties for PLnZT materials.

More Details

Structural variations of potassium aryloxides

Proposed for publication in Inorganic Chemistry.

Boyle, Timothy J.; Boyle, Timothy J.; Andrews, Nicholas L.; Rodriguez, Marko A.

A series of potassium aryloxides (KOAr) were isolated from the reaction of a potassium amide (KN(SiMe3)2) and the desired substituted phenoxide (oMP, 2-methyl; oPP, 2-iso-propyl; oBP, 2-tert-butyl; DMP, 2,6-di-methyl; DIP, 2,6-di-iso-propyl; DBP, 2,6-di-tert-butyl) in tetrahydrofuran (THF) or pyridine (py) as the following: {l_brace}([K(4-oMP)(THF)][K(3-oMP)])5{r_brace} (1), {l_brace}[K6(6,3-oMP)4(6,4-oMP)2(py)4] {center_dot} [K6(6,3-oMP)6(6-py)4]{r_brace} (2), [K(3-oPP)]4(THF)3 (3), {l_brace}K4(6,3-oPP)2(3-oPP)2(py)3{r_brace} (4), [K(3-oBP)(THF)]6 (5), {l_brace}K6(6,3-oBP)2(3-oBP)4(py)4{r_brace} (6), {l_brace}K3(6,3-DMP)2(-DMP)(THF){r_brace} (7), {l_brace}[K(6,-DMP)(py)]2{r_brace} (8), {l_brace}K(6,-DIP){r_brace} (9), {l_brace}K(6,-DBP){r_brace} (10). Further exploration of the aryl interactions led to the investigation of the diphenylethoxide (DPE) derivative which was isolated as [K(3-DPE)(THF)]4 (11) or [K(3-DPE)(py)]4 {center_dot} py2 (12) depending on the solvent used. In general, the less sterically demanding ligands (oMP, oPP, oBP, and DMP) were solvated polymeric species; however, increasing the steric bulk (DIP and DBP) led to unsolvated polymers and not discrete molecules. For most of this novel family of compounds, the K atoms were -bound to the aryl rings of the neighboring phenoxide derivatives to fill their coordination sites. The synthesis and characterization of these compounds are described in detail.

More Details

Growth and morphology of cadmium chalcogenides : the synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O[2]CCH[3])[2]

Proposed for publication in the Journal of Chemistry and Materials.

Bunge, Scott D.; Bunge, Scott D.; Boyle, Timothy J.; Rodriguez, Marko A.; Headley, Thomas J.

In this work, we investigated the controlled growth of nanocrystalline CdE (E = S, Se, and Te) via the pyrolysis of CdO and Cd(O2CCH3)2 precursors, at the specific Cd to E mole ratio of 0.67 to 1. The experimental results reveal that while the growth of CdS produces only a spherical morphology, CdSe and CdTe exhibit rod-like and tetrapod-like morphologies of temporally controllable aspect ratios. Over a 7200 s time period, CdS spheres grew from 4 nm (15 s aliquot) to 5 nm, CdSe nanorods grew from dimensions of 10.8 x 3.6 nm (15 s aliquot) to 25.7 x 11.2 nm, and CdTe tetrapods with arms 15 x 3.5 nm (15 s aliquot) grew into a polydisperse mixture of spheres, rods, and tetrapods on the order of 20 to 80 nm. Interestingly, long tracks of self-assembled CdSe nanorods (3.5 x 24 nm) of over one micron in length were observed. The temporal growth for each nanocrystalline material was monitored by UV-VIS spectroscopy, transmission electron spectroscopy, and further characterized by powder X-ray diffraction. This study has elucidated the vastly different morphologies available for CdS, CdSe, and CdTe during the first 7200 s after injection of the desired chalcogenide.

More Details

Verification, validation, and predictive capability in computational engineering and physics

Bunge, Scott D.; Bunge, Scott D.; Boyle, Timothy J.; Headley, Thomas J.; Kotula, Paul G.; Rodriguez, Marko A.

Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue.

More Details

All-Ceramic Thin Film Battery

Boyle, Timothy J.; Ingersoll, David I.; Cygan, Randall T.; Rodriguez, Marko A.; Rahimian, Kamyar R.; Voigt, James A.

We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films were generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.

More Details

{sup 203,205}Tl NMR Studies of Crystallographically Characterized Thallium Alkoxides. X-Ray Structures of [Tl(OCH{sub 2}CH{sub 3})]4 and [Tl(OAr)]{sub infinity} where OAr = OC{sub 6}H{sub 3}(Me){sub 2}-2,6 and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6

Inorganic Chemistry

Boyle, Timothy J.; Alam, Todd M.; Lang, David P.

[Tl(OCH{sub 2}CH{sub 3})]{sub 4}, (1) was reacted with excess HOR to prepare a series of [Tl(OR)]{sub n} where OR= OCHMe{sub 2} (2, n = 4), OCMe{sub 3} (3, n = 4), OCH{sub 2}CMe{sub 3} (4, n = 4), OC{sub 6}H{sub 3}(Me){sub 2}-2,6 (5, n = {infinity}), and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6 (6, n = {infinity}). Single crystal X-ray diffraction was used to determine the structure of compounds ligated by more sterically demanding ligands. Compound 4 was found to adopt a cubane structure, while 5 and 6 formed linear polymeric structures. These compounds were additionally characterized by {sup 203,205}Tl solution and {sup 205}Tl solid state NMR. Compounds 1--4 were found to remain intact in solution while the polymeric species, 5 and 6, appeared to be fluxional. While variations in the solution and solid state structures for the tetrameric [Tl(OR)]{sub 4} and polymeric [Tl(OAr)]{sub {infinity}} may be influenced by the steric hindrance of their respective ligands, the covalency of the species is believed to be more an effect of the parent alcohol acidity.

More Details

Solvent Influences on the Molecular Aggregation of Magnesium Aryloxides

Polydehron

Boyle, Timothy J.; Rodriguez, Marko A.

Magnesium aryloxides were prepared in a variety of solvents through the reaction of dibutyl magnesium with sterically varied aryl alcohols: 2,6-dimethylphenol (H-DMP), 2,6-diisopropylphenol (H-DIP), and 2,4,6-trichlorophenol (H-TCP). Upon using a sufficiently strong Lewis-basic solvent, the monomeric species Mg(DMP){sub 2}(py){sub 3} (1, py = pyridine), Mg(DIP){sub 2}(THF){sub 3}, (2a, THF = tetrahydrofuran) Mg(TCP){sub 2}(THF){sub 3} (3) were isolated. Each of these complexes possesses a five-coordinate magnesium that adopts a trigonal bipyramidal geometry. In the absence of a Lewis base, the reaction with H-DIP yields a soluble trinuclear complex, [Mg(DIP){sub 2}]{sub 3} (2b). The Mg metal centers in 2b adopt a linear arrangement with a four-coordinate central metal while the outer metal centers are reduced to just three-coordinate. Solution spectroscopic methods suggest that while 2b remains intact, the monomeric species (1, 2a, and 3) are involved in equilibria, which facilitate intermolecular ligand transfer.

More Details

Structural diversity in lithium aryloxides, Part 2

Inorganic Chemistry

Boyle, Timothy J.; Alam, Todd M.; Rodriguez, Marko A.

A series of arylalcohols [H-OAr where OAr = OC{sub 6}H{sub 5} (OPh), OC{sub 6}H{sub 4}(2-Me) (oMP), OC{sub 6}H{sub 3}(2,6-Me){sub 2} (DMP), OC{sub 6}H{sub 4}(2-Pr{prime}) (oPP), OC{sub 6}H{sub 3}(2,6-Pr{prime}){sub 2} (DIP), OC{sub 6}H{sub 4}(2-Bu{prime}) (oBP), OC{sub 6}H{sub 3}(2,6-Bu{prime}){sub 2} (DBP) where Me = CH{sub 3}, Pr{prime} = CHMe{sub 2}, and Bu{prime} = CMe{sub 3}] were reacted with LiN(SiMe{sub 3}){sub 2} in pyridine (py) to generate the appropriate ``Li(OAr)(py){sub x}'' complex. The resultant products were characterized by single crystal X-ray diffraction as: [Li(OPh)(py){sub 2}]{sub 2} (1), [Li(oMP)(py){sub 2}]{sub 2} (2), [Li(DMP)(py){sub 2}]{sub 2} (3), [Li(oPP)(py){sub 2}]{sub 2} (4), [Li(DIP)(py){sub 2}]{sub 2} (5), [Li(oBP)(py){sub 2}]{sub 2} (6), and [Li(DBP)(py)]{sub 2} (7). Compounds 1--6 adopt a dinuclear, edge-shared tetrahedral complex. For 7, due to the steric crowding of the DBP ligand, only one py is coordinated yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand as [Li(DIP)(H-DIP)(py)]{sub 2} (5b) and [Li{sub 2}(DIP){sub 2}(py){sub 3}] (5c). {sup 6,7}Li and {sup 13}C NMR solid state MAS spectroscopy indicated that the bulk powder was consistent with the crystalline material. Solution state NMR spectroscopy revealed a symmetric molecule existed in solution for 1--7.

More Details
Results 201–215 of 215
Results 201–215 of 215