Physical Response of Gold Nanoparticles to Ion Beam Modification
Abstract not provided.
Abstract not provided.
Chemical Communications
Abstract not provided.
Abstract not provided.
Langmuir
Abstract not provided.
Abstract not provided.
Dalton Transactions
Abstract not provided.
Chemistry of Materials
Abstract not provided.
Chemistry of Materials
An evaluation of calcium tungsten oxide (CaWO4) nanoparticles' properties was conducted using the powders generated from an all-alkoxide solvothermal (SOLVO) route. The reaction involved a toluene/pyridine mixture of tungsten(V) ethoxide ([W(OEt)5]) with calcium bis(trimethyl silyl) amide ([Ca(N(Si(CH3)3)2]) modified in situ by a series of alcohols (H-OR) including neo-pentanol (H-OCH2C(CH 3)3 or H-ONep) or sterically varied aryl alcohols (H-OC6H3R2-2,6 where R = CH3 (H-DMP), CH(CH3)2 (H-DIP), C(CH3)3 (DBP))]. Attempts to identify the intermediates generated from this series of reactions led to the crystallographic identification of [(OEt) 4W(μ-OEt)2Ca(DBP)2] (1). Each different SOLVO generated "initial" powder was found by transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) to be nanomaterials roughly assigned as the scheelite phase (PDF 00-041-1431); however, these initial powders displayed no luminescent behavior as determined by photoluminescence (PL) measurements. Thermal processing of these powders at 450, 650, and 750 C yielded progressively larger and more crystalline scheelite nanoparticles. Both PL and cathodoluminescent (CL) emission (422-425 and 429 nm, respectively) were observed for the nanomaterials processed at 750 C. Ion beam induced luminescence (IBIL, 478 nm) appeared to be in agreement with these PL and CL measurements. Further processing of the materials at 1000 C, led to a coalescence of the particles and significant improvement in the observed PL (445 nm) and CL measurements; however, the IBIL spectrum of this material was significantly altered upon exposure. These data suggest that the smaller nanoparticles were more stable to radiation effects possibly due to the lack of energy deposits based on the short track length; whereas the larger particles appear to suffer from radiation induced structural defects. © 2013 American Chemical Society.
Proceedings of SPIE - The International Society for Optical Engineering
For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave. © 2014 SPIE.
Transactions - Geothermal Resources Council
Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the depth of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring ionic tracer concentration and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave. Efforts to expand this tool to measure lithium, cesium, and fluoride ion tracers will be discussed as well.
Chemical Communications
Abstract not provided.
Langmuir
Abstract not provided.
Abstract not provided.
Journal of Coordination Chemistry
Abstract not provided.
As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letter
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.
Abstract not provided.