More than a Ticketing System: O&M Databases as an Analytical Tool
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Narratives about water resources have evolved, transitioning from a sole focus on physical and biological dimensions to incorporate social dynamics Recently, the importance of understanding the visibility of water resources through media coverage has gained attention. This study leverages recent advancements in natural language processing (NLP) methods to characterize and understand patterns in water narratives, specifically in 4 local newspapers in Utah and Georgia. Analysis of the corpus identified coherent topics on a variety of water resources issues, including weather and pollution. Closer inspection of the topics revealed temporal and spatial variations in coverage, with a topic on hurricanes exhibiting cyclical patterns whereas a topic on tribal issues showed coverage predominantly in the western newspapers. We also analyzed the dataset for sentiments, identifying similar categories of words on trust and fear emerging in the narratives across newspaper sources. An analysis of novelty, transience, and resonance using Kullback-Leibler Divergence techniques revealed that topics with high novelty generally contained high transience and marginally high resonance over time. Although additional analysis needs to be conducted, the methods explored in this analysis demonstrate the potential of NLP methods to characterize water narratives in media coverage.
Abstract not provided.
Water Resources Research
Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responses to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. Continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.