Malicious Threat Anticipation using an Adaptive Complex Systems Approach
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Access
Accurate diagnosis of failures is critical for meeting photovoltaic (PV) performance objectives and avoiding safety concerns. This analysis focuses on the classification of field-collected string-level current-voltage (IV) curves representing baseline, partial soiling, and cracked failure modes. Specifically, multiple neural network-based architectures (including convolutional and long short-term memory) are evaluated using domain-informed parameters across different portions of the IV curve and a range of irradiance thresholds. The analysis identified two models that were able to accurately classify the relatively small dataset (400 samples) at a high accuracy (99%+). Findings also indicate optimal irradiance thresholds and opportunities for improvements in classification activities by focusing on portions of the IV curve. Such advancements are critical for expanding accurate classification of PV faults, especially for those with low power loss (e.g., cracked cells) or visibly similar IV curve profiles.
Abstract not provided.
Journal of Contemporary Water Research & Education
We show seasonal runoff from montane uplands is crucial for plant growth in agricultural communities of northern New Mexico. These communities typically employ traditional irrigation systems, called acequias, which rely mainly upon spring snowmelt runoff for irrigation. The trend of the past few decades is an increase in temperature, reduced snow pack, and earlier runoff from snowmelt across much of the western United States. In order to predict the potential impacts of changes in future climate a system dynamics model was constructed to simulate the surface water supplies in a montane upland watershed of a small irrigated community in northern New Mexico through the rest of the 21st century. End-term simulations of representative concentration pathways (RCP) 4.5 and 8.5 suggest that runoff during the months of April to August could be reduced by 22% and 56%, respectively. End-term simulations also displayed a shift in the beginning and peak of snowmelt runoff by up to one month earlier than current conditions. Results suggest that rising temperatures will drive reduced runoff in irrigation season and earlier snowmelt runoff in the dry season towards the end of the 21st century. Modeled results suggest that climate change leads to runoff scheme shift and increased frequency of drought; due to the uncontemporaneous of irrigation season and runoff scheme, water shortage will increase. Potential impacts of climate change scenarios and mitigation strategies should be further investigated to ensure the resilience of traditional agricultural communities in New Mexico and similar regions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Earth's Future
Food, energy, and water (FEW) are primary resources required for human populations and ecosystems. Availability of the raw resources is essential, but equally important are the services that deliver resources to human populations, such as adequate access to safe drinking water, electricity, and sufficient food. Any failures in either resource availability or FEW resources-related services will have an impact on human health. The ability of countries to intervene and overcome the challenges in the FEW domain depends on governance, education, and economic capacities. We distinguish between FEW resources, FEW services, and FEW health outcomes to develop an analysis framework for evaluating interrelationships among these critical resources. The framework is applied using a data-driven approach for sub-Saharan African countries, a region with notable FEW insecurity challenges. The data-driven approach using a cross-validated stepwise regression analysis indicates that limited governance and socioeconomic capacity in sub-Saharan African countries, rather than lack of the primary resources, more significantly impact access to FEW services and associated health outcomes. The proposed framework helps develop a cohesive approach for evaluating FEW metrics and could be applied to other regions of the world to continue improving our understanding of the FEW nexus.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
The IEC 61215 and Qualification Plus indoor aging tests are recognized as valuable assessment procedures for identifying photovoltaic (PV) modules that are prone to early-life failures or excessive degradation. However, it is unclear how well the tests match with reality, and if they can predict in-field performance. Therefore, the present work performed indoor-aging thermal cycling tests on pristine-condition modules and evaluated, using in-field current and voltage (I-V) curve scans, modules of the same make and model exposed to the actual environment within a production field. The experiment included the estimate of the overall exposure to thermal cycling in both indoor and outdoor environments, the extraction of the series resistance from the I-V curves, the development of a model based on the indoor results, and finally the testing of the model on outdoor exposure amounts to predict actual changes in resistance. Index Terms - photovoltaic, accelerated aging, series resistance.
Earth's Future
There is growing interest in nexus research: energy-water, energy-water-land, and more recently food-energy-water. Motivating this movement is the recognition that the dynamics and feedbacks that constitute these nexuses have been overlooked in the past but are critical to the planning and management of these interacting elements. Formal reviews have identified gaps in current studies. In this commentary, we highlight additional oversights that are hindering integration of findings in nexus studies, notably usage of imprecise terminology to describe analyses, a failure to close the loop by linking production with corresponding waste streams, and exclusion of dynamics linking diverse constituent elements. Equally lacking from current nexus studies is a consistent protocol for communicating the conceptual basis of our studies. To fill this gap, we draw on diverse perspectives and fields to propose a comprehensive and systematic framework that can guide the model conceptualization phase of nexus studies. We also present a standardized documentation practice (similar to one utilized by the agent-based modeling community) to facilitate communication of nexus studies. These initiatives can improve our ability to account for and communicate the nuanced, food-energy-water nexus interactions in a consistent manner, which is necessary to better inform risk analysis and avoid decisions with unintended consequences and hidden costs to society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.