Shock Compression of MgO
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa. Under shock compression, electronic excitations become important at 40 GPa. Finally, xenon forms stable molecules with fluorine (XeF{sub 2}) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations.
Abstract not provided.
Density Functional Theory (DFT) has over the last few years emerged as an indispensable tool for understanding the behavior of matter under extreme conditions. DFT based molecular dynamics simulations (MD) have for example confirmed experimental findings for shocked deuterium, enabled the first experimental evidence for a triple point in carbon above 850 GPa, and amended experimental data for constructing a global equation of state (EOS) for water, carrying implications for planetary physics. The ability to perform high-fidelity calculations is even more important for cases where experiments are impossible to perform, dangerous, and/or prohibitively expensive. For solid explosives, and other molecular crystals, similar success has been severely hampered by an inability of describing the materials at equilibrium. The binding mechanism of molecular crystals (van der Waals forces) is not well described within traditional DFT. Among widely used exchange-correlation functionals, neither LDA nor PBE balances the strong intra-molecular chemical bonding and the weak inter-molecular attraction, resulting in incorrect equilibrium density, negatively affecting the construction of EOS for undetonated high explosives. We are exploring a way of bypassing this problem by using the new Armiento-Mattsson 2005 (AM05) exchange-correlation functional. The AM05 functional is highly accurate for a wide range of solids, in particular in compression. In addition, AM05 does not include any van der Waals attraction, which can be advantageous compared to other functionals: Correcting for a fictitious van der Waals like attraction with unknown origin can be harder than correcting for a complete absence of all types of van der Waals attraction. We will show examples from other materials systems where van der Waals attraction plays a key role, where this scheme has worked well, and discuss preliminary results for molecular crystals and explosives.
The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.
Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).
AIP Conference Proceedings
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2009 American Institute of Physics.