We apply diffusion quantum Monte Carlo to a broad set of solids, benchmarking the method by comparing bulk structural properties (equilibrium volume and bulk modulus) to experiment and density functional theory (DFT) based theories. The test set includes materials with many different types of binding including ionic, metallic, covalent, and van der Waals. We show that, on average, the accuracy is comparable to or better than that of DFT when using the new generation of functionals, including one hybrid functional and two dispersion corrected functionals. The excellent performance of quantum Monte Carlo on solids is promising for its application to heterogeneous systems and high-pressure/high-density conditions. Important to the results here is the application of a consistent procedure with regards to the several approximations that are made, such as finite-size corrections and pseudopotential approximations. This test set allows for any improvements in these methods to be judged in a systematic way.
Hydrocarbon polymers, foams and nanocomposites are increasingly being subjected to extreme environments. Molecular scale modeling of these materials offers insight into failure mechanisms and complex response. Prior classical molecular dynamics (MD) simulations of the principal shock Hugoniot for two hydrocarbon polymers, polyethylene (PE) and poly (4-methyl-1-pentene) (PMP) have shown good agreement with density functional theory (DFT) calculations and experiments conducted at Sandia National Laboratories. We extended these results to include low-density polymer foams using nonequilibrium MD techniques and found good quantitative agreement with experiment. Here, we have measured the local temperature during void collapse to investigate the formation of hot spots and their relationship to polymer dissociation in foams.