Publications

Results 51–54 of 54
Skip to search filters

Temperature imaging of vortex-flame interaction by filtered Rayleigh scattering

American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD

Kearney, S.P.; Schefer, Robert W.; Beresh, Steven J.; Grasser, Thomas W.

This paper describes the application of a filtered-Rayleigh-scattering (FRS) instrument for nonintrusive temperature imaging in a vortex-driven diffusion flame. The FRS technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes. Use of a molecular iodine filter relaxes the requirement for clean, particulate-free flowfields and offers the potential for imaging near walls, test section windows and in sooty flames, all of which are precluded in conventional Rayleigh imaging, where background interference from these sources typically overwhelms the weak molecular scattering signal. For combustion applications, FRS allows for full-field temperature imaging without chemical seeding of the flowfield, which makes FRS an attractive alternative to other laser-based imaging methods such as planar laser-induced fluorescence (PLIF). In this work, the details of our FRS imaging system are presented and temperature measurements from an acoustically forced diffusion flame are provided. The local Rayleigh cross-section is corrected using Raman imaging measurements of the methane fuel molecule, which are then correlated to other major species using a laminar flamelet approach. To our knowledge, this is the first report of joint Raman/FRS imaging for nonpremixed combustion. Measurements are presented from flames driven at 7.5 Hz, where a single vortex stretches the flame, and at 90 Hz, where two consecutive vortices interact to cause a repeatable strain-induced flame-quenching event.

More Details
Results 51–54 of 54
Results 51–54 of 54