Publications

Results 1–25 of 54
Skip to search filters

Design and Characterization of the Sandia Free-Piston Reflected Shock Tunnel

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Lynch, Kyle P.; Grasser, Thomas W.; Farias, Paul A.; Daniel, Kyle; Spillers, Russell W.; Downing, Charley R.; Wagner, Justin W.

A new reflected shock tunnel has been commissioned at Sandia capable of generating hypersonic environments at realistic flight enthalpies. The tunnel uses an existing free-piston driver and shock tube coupled to a conical nozzle to accelerate the flow to approximately Mach 9. The facility design process is outlined and compared to other ground test facilities. A representative flight enthalpy condition is designed using an in-house state-to-state solver and piston dynamics model and evaluated using quasi-1D modeling with the University of Queensland L1d code. This condition is demonstrated using canonical models and a calibration rake. A 25 cm core flow with 4.6 MJ/kg total enthalpy is achieved over an approximately 1 millisecond test time. Analysis shows that increasing piston mass should extend test time by a factor of 2-3.

More Details

Early experiments on shock-particle curtain interactions in the high-temperature shock tube

AIAA Scitech 2020 Forum

Petter, Samuel; Lynch, Kyle P.; Farias, Paul A.; Spitzer, Seth M.; Grasser, Thomas W.; Wagner, Justin W.

A new capability has been added to study shock-particle interactions in the Sandia High-Temperature Shock Tube (HST). The apparatus to do so featured a high-speed pneumatic actuator with high-pressure engineered seals. Like previous studies in a lower-strength facility, the particle curtain was comprised of 100-micron glass spheres at an initial volume fraction of approximately 20%. A shock-particle interaction was investigated using 210 kHz Schlieren imaging where the incident shock Mach number was 3.3. The initially uniform curtain was distorted by recoil in the HST. Nevertheless, the interaction dynamics were observed to be qualitatively similar to those in previous studies. Future efforts will work to decouple the recoil from the curtain formation and push the interaction towards stronger shocks.

More Details

Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

Combustion and Flame

Kearney, S.P.; Grasser, Thomas W.

We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting, 2-m base diameter turbulent pool fire, burning a 10%-toluene/90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized for simultaneous point measurements of temperature and soot. The research fuel-blend used here results in a lower soot loading than real transportation fuels, but allows us to apply high-fidelity laser diagnostics for spatially resolved measurements in a fully turbulent, buoyant fire of meter-scale base size. Profiles of mean and rms fluctuations are radially resolved across the fire plume, both within the hydrocarbon-rich vapor-dome region near fuel pool, and higher within the actively burning region of the fire. The spatial evolution of the soot and temperature probability density functions is discussed. Soot fluctuations display significant intermittency across the full extent of the fire plume for the research fuel blend used. Simultaneous, spatially overlapped temperature/soot measurements permit us to obtain estimates of joint statistics that are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations. Within the actively burning region of the fire, soot is observed to occupy a limited temperature range between ∼1000 and 2000 K, with peak soot concentration occurring at 1600–1700 K across the full radial extent of the fire plume, despite marked changes in the local temperature pdf across the same spatial extent. A wider range of soot temperatures is observed in the fuel vapor-dome region low in the pool fire, with detectable cold soot persisting into conditionally averaged statistics. The results yield insight into soot temperature across a wide spatial extent of a fully turbulent pool fire of meaningful size, which are valuable for development of soot radiative-emission models and for validation of fire fluid-dynamics codes.

More Details

Aerodynamic breakup and secondary drop formation for a liquid metal column in a shock-induced cross-flow

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Chen, Yi; DeMauro, Edward P.; Wagner, Justin W.; Arienti, Marco A.; Guildenbecher, Daniel R.; Farias, Paul A.; Grasser, Thomas W.; Sanderson, Patrick D.; Albert, Samuel W.; Turpin, Aaron M.; Sealy, William; Ketchum, Remington S.

The breakup of liquid metals is of relevance to powder formation, thermal spray coatings, liquid metal cooling systems, investigations of accident scenarios, and model validation. In this work, a column of liquid Galinstan, a room-temperature liquid metal alloy, is studied in a shock-induced cross-flow. Backlit experiments are used to characterize breakup morphology and digital in-line holography is used to quantitatively measure the size and speed of secondary droplets. Two-dimensional simulations are also developed in order to help understand the underlying mechanisms that drive breakup behavior. Results show that although breakup morphologies are similar for water and Galinstan at the same Weber number, the breakup distance, secondary droplet size, and secondary droplet shapes differ. Evidence indicates that secondary droplet formation may be related to the Weber number, density ratio, the convective velocity and other effects.

More Details

KHz rate digital in-line holography applied to quantify secondary droplets from the aerodynamic breakup of a liquid column in a shock-tube

54th AIAA Aerospace Sciences Meeting

Guildenbecher, Daniel R.; Wagner, Justin W.; Olles, Joseph D.; Chen, Yi; DeMauro, Edward P.; Farias, Paul A.; Grasser, Thomas W.; Sojka, Paul E.

The breakup of liquids due to aerodynamic forces has been widely studied. However, the literature contains limited quantified data on secondary droplet sizes, particularly as a function of time. Here, a column of liquid water is subjected to a step change in relative gas velocity using a shock tube. A unique digital in-line holography (DIH) configuration is proposed which quantifies the secondary droplets sizes, three-dimensional position, and three-component velocities at 100 kHz. Results quantify the detailed evolution of the characteristic mean diameters and droplet size-velocity correlations as a function of distance downstream from the initial location of the water column. Accuracy of the measurements is confirmed through mass balance. These data give unprecedented detail on the breakup process which will be useful for improved model development and validation.

More Details

Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

Kearney, S.P.; Guildenbecher, Daniel R.; Winters, Caroline W.; Grasser, Thomas W.; Farias, Paul A.; Hewson, John C.

We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

More Details

Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film

Experiments in Fluids

Guildenbecher, Daniel R.; Engvall, Luke; Gao, Jian; Grasser, Thomas W.; Reu, Phillip L.; Chen, Jun

Digital in-line holography (DIH) is an optical technique which measures particle sizes and their three-dimensional (3D) positions and velocities. Here DIH and a recently proposed hybrid method of particle detection are applied to quantify the secondary droplets generated by the impact of a single drop on a thin film. By leveraging the expected symmetry between in-plane and out-of-plane velocities, experimental depth uncertainty is measured to be approximately 0.7 of the mean droplet diameter. Furthermore, comparison with previous measurements using alternative techniques shows good agreement with the measured temporal evolution of drop number, size, and velocity components. Finally, the power of DIH to extract the complex 3D morphology of the protruding jets is demonstrated. © 2014 Springer-Verlag Berlin Heidelberg.

More Details

Laser-induced incandescence measurements of soot in turbulent pool fires

Applied Optics

Frederickson, Kraig; Kearney, Sean P.; Grasser, Thomas W.

We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10 -5 cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities. © 2010 Optical Society of America.

More Details
Results 1–25 of 54
Results 1–25 of 54