Use of Cube-Corner Nano-indentation Crack Length Measurements to Estimate Residual Stresses Over Small Spatial Dimensions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Materials
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Materials Research.
Instrumented indentation has yielded mixed results when used to measure surface residual stresses in metal films. Relative to metals, many glasses and ceramics have a low modulus-to-yield strength (E/sy) ratio. The advantage of this characteristic for measuring residual stress using instrumented indentation is demonstrated by a series of comparative spherical and conical tip finite element simulations. Two cases are considered: (i) a material with E/s{sub y} = 24-similar to glass and (ii) a material with E/s{sub y} = 120-similar to metal films. In both cases, compressive residual stress shifts the simulated load-displacement response toward increasing hardness, irrespective of tip geometry. This shift is shown to be entirely due to pile up for the ''metal'' case, but primarily due to the direct influence of the residual stress for the ''glass'' case. Hardness changes and load-displacement curve shifts are explained by using the spherical cavity model. Supporting experimental results on stressed glasses are provided.
Journal of the American Ceramic Society
Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 μm were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics. © 2006 The American Ceramic Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Advanced Engineering Materials.
Abstract not provided.
Abstract not provided.
Proposed for presentation at the Journal of Microelectromechanical Systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science-based infrastructure to enhance the production of integrated metal--semiconductor systems and will directly impact RF MEMS and LIGA technologies at Sandia.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.
Proposed for publication in Mechanics of Materials.
Abstract not provided.
American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS)
Surface micromachining (SMM) techniques produce complex microscale polysilicon features on the surface of a silicon wafer using a patterned multilayer film deposition process. Failure characteristics of SMM polysilicon obtained from testing series of 2 μm and 4 μm wide ligaments fabricated using standard SMM processing techniques, fit a Weibull distribution, suggesting a behavior governed by a distribution of flaws, similar to brittle ceramic materials. However, positive identification of critical flaws that dictate the failure distributions within the ligaments remains unclear. Likely candidates are flaws associated with surface roughness or grain boundary intersections within the polysilicon microstructure. To address the possible connection between microstructure and failure behavior of SMM polysilicon, templates based on observed polysilicon microstructure were subjected to deformation simulations using polycrystal elasticity modeling. Series of simulations were performed to capture the statistical failure response of polysilicon due to local elastically driven stress concentrations between grains with different crystallographic orientations. Simulated results are presented and discussed in the context of experimental failure data.
The purpose of microstructural control is to optimize materials properties. To that end, they have developed sophisticated and successful computational models of both microstructural evolution and mechanical response. However, coupling these models to quantitatively predict the properties of a given microstructure poses a challenge. This problem arises because most continuum response models, such as finite element, finite volume, or material point methods, do not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical properties regardless of grain size, in conflict with theory and observations. In this project, they took a tiered risk approach to incorporate microstructure and its resultant length scales in mechanical response simulations. Techniques considered include low-risk, low-benefit methods, as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response model with a local length-scale parameter, a power-law hardening rate gradient near grain boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These techniques were validated on a variety of systems for which theoretical analyses and/or experimental data exist. The results may be used to generate improved constitutive models that explicitly depend upon microstructure and to provide insight into microstructural deformation and failure processes. Furthermore, because mechanical state drives microstructural evolution, a strain-enhanced grain growth model was coupled with the mechanical response simulations. The coupled model predicts both properties as a function of microstructure and microstructural development as a function of processing conditions.
Abstract not provided.
This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.