Finite Element Predictions of Grainscale Behavior in BCC Metals
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Modeling and Simulation in Materials Science and Engineering (MSMSE).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energy Technology 2012: Carbon Dioxide Management and Other Technologies
Understanding the effects of extensive radiation damage in structural metals provides necessary insight for predicting the performance of those metals considered for application in the extreme radiation environment. Predicting mechanical performance after long term radiation exposure is of great importance to extending the life of current nuclear reactors and for developing future materials for the next generation of reactors. A combination of finite element modeling, nanoindentation, and TEM characterization were used to rapidly determine the microstructure and mechanical properties influences of ion irradiation on a standard 316L stainless steel sample. The results of this study found that ion irradiation and small scale mechanical property testing can be used to characterize extensive levels of radiation damage structure, only when significant consideration is given to ion irradiation depth, surface roughness and polishing condition, the irradiation temperature, and.many other experimental parameters. © 2012 The Minerals, Metals, & Materials Society. All rights reserved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Plasticity
Despite the technological importance of body-centered cubic (BCC) metals, models of their plastic deformation are less common than those of face-centered cubic (FCC) metals, due in part to the complexity of slip in BCC crystals caused by the thermal activation of screw dislocation motion. This paper presents a physically based crystal plasticity model that incorporates atomistic models and experimental measurements of the thermally activated nature of screw dislocation motion. This model, therefore, reproduces the temperature, stress, and strain rate dependence of flow in BCC metals in a simple formulation that will allow for large, grain-scale simulations. Furthermore, the results illustrate the importance of correctly representing mechanistic transitions in materials with high lattice friction. © 2012 Elsevier Ltd. All rights reserved.
Abstract not provided.
Abstract not provided.
JOM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.
Abstract not provided.
Abstract not provided.
Shape memory alloys (SMAs) are metals that exhibit large recoverable strains and exert large forces with tremendous energy densities. The behavior of SMAs is thermomechanically coupled. Their response to temperature is sensitive to their loading condition and their response to loading is sensitive to their thermal condition. This coupled behavior is not to be circumvented, but to be confronted and understood, since it is what manifests SMA's superior clamping performance. To reasonably characterize the coupled behavior of SMA clamping rings used in safety mechanisms, we conduct a series of experiments on SMA samples. The results of the tests will allow increased fidelity in modeling and failure analysis of parts.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Abstract not provided.