Publications

Results 1–50 of 177
Skip to search filters

Thermal conductivity of (Ge2Sb2Te5)1–xCx phase change films

Journal of Applied Physics

Scott, Ethan A.; Ziade, Elbara Z.; Saltonstall, Christopher B.; McDonald, Anthony E.; Rodriguez, Mark A.; Hopkins, Patrick E.; Beechem, Thomas E.; Adams, David P.

Germanium–antimony–telluride has emerged as a nonvolatile phase change memory material due to the large resistivity contrast between amorphous and crystalline states, rapid crystallization, and cyclic endurance. Improving thermal phase stability, however, has necessitated further alloying with optional addition of a quaternary species (e.g., C). In this work, the thermal transport implications of this additional species are investigated using frequency-domain thermoreflectance in combination with structural characterization derived from x-ray diffraction and Raman spectroscopy. Specifically, the room temperature thermal conductivity and heat capacity of (Ge2Sb2Te5)1–xCx are reported as a function of carbon concentration (x ≤ 0:12) and anneal temperature (T ≤ 350 °C) with results assessed in reference to the measured phase, structure, and electronic resistivity. Phase stability imparted by the carbon comes with comparatively low thermal penalty as materials exhibiting similar levels of crystallinity have comparable thermal conductivity despite the addition of carbon. The additional thermal stability provided by the carbon does, however, necessitate higher anneal temperatures to achieve similar levels of structural order.

More Details

Enhancing graphene plasmonic device performance via its dielectric environment

Physical Review Applied

Jarzembski, Amun J.; Goldflam, Michael G.; Siddiqui, Aleem M.; Ruiz, Isaac R.; Beechem, Thomas E.

Graphene plasmons provide a compelling avenue toward chip-scale dynamic tuning of infrared light. Dynamic tunability emerges through controlled alterations in the optical properties of the system defining graphene's plasmonic dispersion. Typically, electrostatic induced alterations of the carrier concentration in graphene working in conjunction with mobility have been considered the primary factors dictating plasmonic tunability. We find here that the surrounding dielectric environment also plays a primary role, dictating not just the energy of the graphene plasmon but so too the magnitude of its tuning and spectral width. To arrive at this conclusion, poles in the imaginary component of the reflection coefficient are used to efficiently survey the effect of the surrounding dielectric on the tuning of the graphene plasmon. By investigating several common polar materials, optical phonons (i.e., the Reststrahlen band) of the dielectric substrate are shown to appreciably affect not only the plasmon's spectral location but its tunability, and its resonance shape as well. In particular, tunability is maximized when the resonances are spectrally distant from the Reststrahlen band, whereas sharp resonances (i.e., high-Q) are achievable at the band's edge. These observations both underscore the necessity of viewing the dielectric environment in aggregate when considering the plasmonic response derived from two-dimensional materials and provide heuristics to design dynamically tunable graphene-based infrared devices.

More Details

Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance

Goldflam, Michael G.; Anderson, Evan M.; Fortune, Torben R.; Klem, John F.; Hawkins, Samuel D.; Davids, Paul D.; Campione, Salvatore; Pung, Aaron J.; Webster, Preston T.; Weiner, Phillip H.; Finnegan, Patrick S.; Wendt, Joel R.; Wood, Michael G.; Haines, Chris H.; Coon, Wesley T.; Olesberg, Jonathon T.; Shaner, Eric A.; Kadlec, Clark N.; Beechem, Thomas E.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Kim, Jin K.; Peters, D.W.

Abstract not provided.

Complexion dictated thermal resistance with interface density in reactive metal multilayers

Physical Review B

Saltonstall, Christopher B.; McClure, Zachary D.; Abere, Michael J.; Guzman, David; Reeve, Samuel T.; Strachan, Alejandro; Kotula, Paul G.; Adams, David P.; Beechem, Thomas E.

Multilayers composed of aluminum (Al) and platinum (Pt) exhibit a nonmonotonic trend in thermal resistance with bilayer thickness as measured by time domain thermoreflectance. The thermal resistance initially increases with reduced bilayer thickness only to reach a maximum and then decrease with further shrinking of the multilayer period. These observations are attributed to the evolving impact of an intermixed amorphous complexion approximately 10 nm in thickness, which forms at each boundary between Al- and Pt-rich layers. Scanning transmission electron microscopy combined with energy dispersive x-ray spectroscopy find that the elemental composition of the complexion varies based on bilayer periodicity as does the fraction of the multilayer composed of this interlayer. These variations in complexion mitigate boundary scattering within the multilayers as shown by electronic transport calculations employing density-functional theory and nonequilibrium Green's functions on amorphous structures obtained via finite temperature molecular dynamics. The lessening of boundary scattering reduces the total resistance to thermal transport leading to the observed nonmonotonic trend thereby highlighting the central role of complexion on thermal transport within reactive metal multilayers.

More Details

Monolithically fabricated tunable long-wave infrared detectors based on dynamic graphene metasurfaces

Applied Physics Letters

Goldflam, Michael G.; Ruiz, Isaac R.; Howell, S.W.; Tauke-Pedretti, Anna; Anderson, Evan M.; Wendt, J.R.; Finnegan, P.; Hawkins, Samuel D.; Coon, W.; Fortune, Torben R.; Shaner, Eric A.; Kadlec, Clark N.; Olesberg, Jonathon T.; Klem, John F.; Webster, Preston T.; Sinclair, Michael B.; Kim, Jin K.; Peters, D.W.; Beechem, Thomas E.

Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.

More Details

Uncertainty in linewidth quantification of overlapping Raman bands

Review of Scientific Instruments

Saltonstall, Christopher B.; Beechem, Thomas E.; Amatya, Jatin; Floro, Jerrold; Norris, Pamela M.; Hopkins, Patrick E.

Spectral linewidths are used to assess a variety of physical properties, even as spectral overlap makes quantitative extraction difficult owing to uncertainty. Uncertainty, in turn, can be minimized with the choice of appropriate experimental conditions used in spectral collection. In response, we assess the experimental factors dictating uncertainty in the quantification of linewidth from a Raman experiment highlighting the comparative influence of (1) spectral resolution, (2) signal to noise, and (3) relative peak intensity (RPI) of the overlapping peaks. Practically, Raman spectra of SiGe thin films were obtained experimentally and simulated virtually under a variety of conditions. RPI is found to be the most impactful parameter in specifying linewidth followed by the spectral resolution and signal to noise. While developed for Raman experiments, the results are generally applicable to spectroscopic linewidth studies illuminating the experimental trade-offs inherent in quantification.

More Details

Semiconductor Hyperbolic Metamaterials at the Quantum Limit

Scientific Reports

Montaño, Inès; Campione, Salvatore; Klem, John F.; Beechem, Thomas E.; Wolf, Omri; Sinclair, Michael B.; Luk, Ting S.

We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.

More Details

Tunable dual-band graphene-based infrared reflectance filter

Optics Express

Goldflam, Michael G.; Ruiz, Isaac R.; Howell, Stephen W.; Wendt, J.R.; Sinclair, Michael B.; Peters, D.W.; Beechem, Thomas E.

We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm-1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here isapplicable across a broad range of infrared frequencies.

More Details

Polysulfide Speciation in the Bulk Electrolyte of a Lithium Sulfur Battery

Journal of the Electrochemical Society

McBrayer, Josefine D.; Beechem, Thomas E.; Perdue, Brian R.; Garzon, Fernando; Apblett, Christopher A.

In situ Raman microscopy was used to study polysulfide speciation in the bulk ether electrolyte during the discharge and charge of a Li-S electrochemical cell to assess the complex interplay between chemical and electrochemical reactions in solution. During discharge, long chain polysulfides and the S3- radical appear in the electrolyte at 2.4 V indicating a rapid equilibrium of the dissociation reaction to form S3-. When charging, however, an increase in the concentration of all polysulfide species was observed. This highlights the importance of the electrolyte to sulfur ratio and suggests a loss in the useful sulfur inventory from the cathode to the electrolyte.

More Details
Results 1–50 of 177
Results 1–50 of 177