Electrothermal Instability Evolution on Z-Pinch Rods and Imploding Liners Pulsed with Intense Current
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Magneti zed Liner Inerti al Fusion (MagLIF ) is an inertial confinement fusion (ICF) concept that includes a strong magnetic field embedded in the fuel to mitigate thermal conduction loss during the implosion . MagLIF experiments on Sandia's 20 MA Z Machine uses an external Helmholtz - like coil pair for fuel premagnetization . By contrast, t he novel AutoMag concept employs a composite liner (cylindrical tube) with helically oriented conduction paths separated by insulating material to provide axial premagnetization of the fuel . Initially, during a current prepulse that slowly rises to %7E1 MA, current flows helically through the AutoMag liner , and so urces the fuel with an axial field . Next, a rapidly rising main current pulse breaks down the insulation and current in th e liner becomes purely axial. The liner and premagnetized fuel are then compressed by the rapidly growing azimuthal field external to t he liner. This integrated axial - field - production mechanism offers a few potential advantages when compared to the externa l premagnetization coils. AutoMag can increase drive current to MagLIF experiments by enabling a lower inductance transmission line , provide higher premagnetization field (>30 T), and greatly increase radial x - ray diagnostic access. 3D electromagnetic si mulations using ANSYS Maxwell have been completed in order to explore the current distributions within the helical conduction paths, the inter - wire dielectric strength properties, and the thermal properties of the helical conduction paths during premagneti zation (%7E1 MA in 100ns). Th ree liner designs , of varying peak field strength, and associated varying risk of dielectric breakdown, will soon be tested in experiments on the %7E 1 MA, 100ns Mykonos facility. Experiments will measure B z (t) inside of the line r and assess failure mechanisms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Magnetically driven implosions (MDIs) on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments. MDIs are hampered by the Magneto-Rayleigh-Taylor (MRT) instability, which can grow to large amplitude from a small seed perturbation, limiting achievable stagnation pressures and temperatures. The metallic liners used in Magnetized Liner Inertial Fusion (MagLIF) experiments include astonishingly small (-10 nm RMS) initial surface roughness perturbations; nevertheless, unexpectedly large MRT amplitudes are observed in experiments. An electrothermal instability (ETI) may provide a perturbation which exceeds the initial surface roughness. For a condensed metal resistivity increases with temperature. Locations of higher resistivity undergo increased Ohmic heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature (and pressure) growth produces density perturbations when the locally overheated metal changes phase, providing the seed perturbation for MRT growth. ETI seeding of MRT on thick conductors carrying current in a skin layer has thus far only been inferred by evaluating MRT amplitude late in the experiment. A direct observation of ETI is vital to ensure our simulation tools are accurately representing the seed of the deleterious MRT instability. In this LDRD project, ETI growth was directly observed on the surface of 1.0-mm-diameter solid Al rods which were pulsed with 1 MA of current in 100 ns. Fine structures resulting from ETI-driven temperature variations were observed directly through high resolution gated optical imaging. Data from two Aluminum alloys (6061 and 5N) and a variety fabrication techniques (conventional machining, single-point diamond turned, electropolished) enable evaluation of which imperfections provide a seed for ETI growth and subsequent plasma initiation. Data is relevant to the early stages of MagLIF liner implosions, when the ETI seed of MRT may be initiated, and provides a fundamentally new dataset with which to test our state-of-the-art simulation tools.