Publications

Results 26–50 of 50
Skip to search filters

Materials and innovations for large blade structures: Research opportunities in wind energy technology

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Ashwill, Thomas D.

The significant growth in wind turbine installations in the past few years has fueled new scenarios that envision even larger expansion of U.S. wind electricity generation from the current 1.5% to 20% by 2030. Such goals are achievable and would reduce carbon dioxide emissions and energy dependency on foreign sources. In conjunction with such growth are the enhanced opportunities for manufacturers, developers, and researchers to participate in this renewable energy sector. Ongoing research activities at the National Renewable Energy Laboratory and Sandia National Laboratories will continue to contribute to these opportunities. This paper focuses on describing the current research efforts at Sandia's wind energy department, which are primarily aimed at developing large rotors that are lighter, more reliable and produce more energy.

More Details

Blade system design studies volume II : preliminary blade designs and recommended test matrix

Ashwill, Thomas D.

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

More Details

Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures

Ashwill, Thomas D.

Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

More Details

Design studies for twist-coupled wind turbine blades

Ashwill, Thomas D.

This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

More Details

Innovative design approaches for large wind turbine blades : final report

Ashwill, Thomas D.; Ashwill, Thomas D.

The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

More Details

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

Ashwill, Thomas D.; Ashwill, Thomas D.

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

More Details

Cost Study for Large Wind Turbine Blades

Ashwill, Thomas D.; Ashwill, Thomas D.

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

More Details

Innovative Design Approaches for Large Wind Turbine Blades

Ashwill, Thomas D.; Ashwill, Thomas D.

The primary goal of the WindPACT Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. The initial project task was to assess the fundamental physical and manufacturing issues that govern and constrain large blades and entails three basic elements: (1) a parametric scaling study to assess blade structure using current technology, (2) an economic study of the cost to manufacture, transport, and install large blades, and (3) identification of promising innovative design approaches that show potential for overcoming fundamental physical and manufacturing constraints. This report discusses several innovative design approaches and their potential for blade cost reduction. During this effort we reviewed methods for optimizing the blade cross-section to improve structural and manufacturing characteristics. We also analyzed and compared a number of composite materials and evaluated their relative merits for use in large wind turbine blades in the range from 30 meters to 70 meters. The results have been summarized in dimensional and non-dimensional format to aid in interpretation. These results build upon earlier parametric and blade cost studies, which were used as a guide for the innovative design approaches explored here.

More Details

Material Characterization of Glass, Carbon, and Hybrid-Fiber SCRIMP Panels

Ashwill, Thomas D.

The purpose of this study was to generate the material database for carbon and glass composite panels created by the SCRIMP process. The materials tested were glass/polyester composites, two types of carbon/polyester composites, and carbon and glass hybrid composites. The differences between the two types of carbon/polyester, which we call Type 1 and Type 2, are the ply thickness (.037 inch/ply and .048 inch/ply) and slightly different treatment of polyester resin. The tests that were performed for this study are four-point-bending tests, tension tests, panel warping tests, and beam bend-twist coupling tests. The material properties of interest were basic longitudinal and transverse stiffness and strength, residual stress due to curing, and the effect of bend-twist coupling. The bend-twist coupling is a feature that can be added to the composite laminate or structure, such that when it is bent, it will also twist.

More Details

Blade Manufacturing Improvement Project: Final Report

Ashwill, Thomas D.

The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

More Details

Parametric Study for Large Wind Turbine Blades: WindPACT Blade System Design Studies

Ashwill, Thomas D.

This report presents the results of a study of various wind turbine blade design parameters as a function of blade length in the range from 30 meters to 70 meters. The results have been summarized in dimensional and non-dimensional formats to aid in interpretation. The parametric review estimated peak power and annual energy capture for megawatt scale wind turbines with rotors of 62, 83, 104, 125, and 146 meters in diameter. The baseline ''thin'' distribution represents conventional airfoils used in large wind turbine blades. The ''thicker'' and ''thickest'' distributions utilize airfoils that have significantly increased thickness to improve structural performance and reduce weight. An aerodynamic scaling effort was undertaken in parallel with the structural analysis work to evaluate the effect of extreme thickness on aerodynamic characteristics. Increased airfoil section thickness appears to be a key tool in limiting blade weight and cost growth with scale. Thickened and truncated trailing edges in the inboard region provide strong, positive effects on blade structural performance. Larger blades may require higher tip speeds combined with reduced blade solidity to limit growth of design loads. A slender blade can be used to reduce extreme design loads when the rotor is parked, but requires a higher tip speed.

More Details

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades

Ashwill, Thomas D.; Ashwill, Thomas D.

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

More Details

Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

Ashwill, Thomas D.

The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

More Details
Results 26–50 of 50
Results 26–50 of 50