Publications

Results 26–50 of 51
Skip to search filters

Development of the Sandia Cooler

Johnson, Terry A.; Hecht, Ethan S.; Spencer, Nathan S.; Vanness, Justin W.; Gorman, Ryan G.; Koplow, Jeffrey P.; Staats, Wayne L.; Curgus, Dita B.; Leick, Michael T.; Matthew, Ned D.; Zimmerman, Mark D.; Arienti, Marco A.; Gharagozloo, Patricia E.

This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

More Details

Reimagining liquid transportation fuels : sunshine to petrol

Allendorf, Mark D.; Staiger, Chad S.; Ambrosini, Andrea A.; Chen, Ken S.; Coker, Eric N.; Dedrick, Daniel E.; Hogan, Roy E.; Ermanoski, Ivan E.; Johnson, Terry A.; McDaniel, Anthony H.

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

More Details

Durability study of a vehicle-scale hydrogen storage system

Johnson, Terry A.; Dedrick, Daniel E.; Behrens, Richard B.

Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

More Details

Performance characterization of a hydrogen catalytic heater

Johnson, Terry A.; Kanouff, Michael P.

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

More Details

Parameter study of a vehicle-scale hydrogen storage system

Johnson, Terry A.; Kanouff, Michael P.

Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

More Details

Zirconium and niobium transmission data at wavelengths from 11-16 nm and 200-1200 nm

Proceedings of SPIE - The International Society for Optical Engineering

Johnson, Terry A.; Soufli, Regina; Gullikson, Eric M.; Cliff, Miles

Transmission measurements of niobium and zirconium at both extreme-ultraviolet (EUV) and ultraviolet, visible, and near infrared (UV/Vis/NIR) wavelengths are presented. Thin foils of various thicknesses mounted on nickel mesh substrates were measured, and these data were used to calculate the optical constants δ and β of the complex refractive index n = 1-δ+iβ. β values were calculated directly from the measured transmittance of the foils after normalizing for the nickel mesh. The average β values for each set of foils are presented as a function of wavelength. The real (dispersive) part of the refractive index, δ was then calculated from Kramers-Kronig analysis by combining these β values with those from previous experimental data and the atomic tables.

More Details
Results 26–50 of 51
Results 26–50 of 51