Novel Bismuth-based Inorganic Oxide Waste Forms for Iodine Storage
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.
Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The sintering behavior of Sandia chem-prep high field varistor materials was studied using techniques including in situ shrinkage measurements, optical and scanning electron microscopy and x-ray diffraction. A thorough literature review of phase behavior, sintering and microstructure in Bi{sub 2}O{sub 3}-ZnO varistor systems is included. The effects of Bi{sub 2}O{sub 3} content (from 0.25 to 0.56 mol%) and of sodium doping level (0 to 600 ppm) on the isothermal densification kinetics was determined between 650 and 825 C. At {ge} 750 C samples with {ge}0.41 mol% Bi{sub 2}O{sub 3} have very similar densification kinetics, whereas samples with {le}0.33 mol% begin to densify only after a period of hours at low temperatures. The effect of the sodium content was greatest at {approx}700 C for standard 0.56 mol% Bi{sub 2}O{sub 3} and was greater in samples with 0.30 mol% Bi{sub 2}O{sub 3} than for those with 0.56 mol%. Sintering experiments on samples of differing size and shape found that densification decreases and mass loss increases with increasing surface area to volume ratio. However, these two effects have different causes: the enhancement in densification as samples increase in size appears to be caused by a low oxygen internal atmosphere that develops whereas the mass loss is due to the evaporation of bismuth oxide. In situ XRD experiments showed that the bismuth is initially present as an oxycarbonate that transforms to metastable {beta}-Bi{sub 2}O{sub 3} by 400 C. At {approx}650 C, coincident with the onset of densification, the cubic binary phase, Bi{sub 38}ZnO{sub 58} forms and remains stable to >800 C, indicating that a eutectic liquid does not form during normal varistor sintering ({approx}730 C). Finally, the formation and morphology of bismuth oxide phase regions that form on the varistors surfaces during slow cooling were studied.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.
This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials in the La{sub 0.1}Sr{sub 0.9}Co{sub 1-y}MnyO{sub 3-{delta}} (LSCM) family are potentially useful as ceramic membranes for high-temperature oxygen separations. A series of LSCM samples was synthesized by solid state methods and characterized by powder X-ray diffraction, thermogravimetric analysis, and four-probe conductivity. The materials were indexed in the cubic Pm-3m space group. TGA data implied that LSCM can reversibly absorb and desorb oxygen versus temperature and partial oxygen pressure, while powder diffraction data showed that the material maintained the cubic perovskite structure. Preliminary four-probe conductivity measurements signify p-type semiconducting behavior.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microsystem Technologies
Metal and ceramic micro-components with ∼10 μm features were fabricated by molding nano-powder-binder mixtures in micro-molds produced from LiGA-formed masters and then sintering to achieve the desired density and properties. The mechanical properties of the metals nickel and 316L stainless steel were measured in tension using miniature dog bone shaped, micro-molded test specimens. The sintering temperature controlled yield stress (YS), the ultimate tensile strength (UTS) and the ductility of the nickel with the YS and the UTS decreasing and the ductility increasing with increasing sintering temperature. For the stainless steel, the YS was nearly 400 MPa, UTS was 650 MPa and the ductility was 3%. The mechanical properties of aluminum oxide ceramics were determined using 4-point bending on miniature micro-molded bend bars. The average modulus of rupture (MOR) was 260 MPa. Careful measurements were made of the dimensional tolerance of the micro-molded parts both before and after sintering using automated optical metrology. The variability in the dimensions of a sintered SS gear after sintering was <3 μm. Finally microscopic examination of the micromolded components indicated that the final grain size was generally less than 1 μm with minimal residual porosity.
ACS Division of Fuel Chemistry, Preprints
Efficient and environmentally sound methods of producing hydrogen are of great importance to the US as it progresses toward the H2 economy. Current studies are investigating the use of high temperature systems driven by nuclear and/or solar energy to drive thermochemical cycles for H2 production. These processes are advantageous since they do not produce greenhouse gas emissions that are a result of hydrogen production from electrolysis or hydrocarbon reformation. Double-substituted perovskites, A1-xSrxCo1-yBy O3-δ (A = Y, La; B = Fe, Ni, Cr, Mn) were synthesized for use as ceramic high-temperature oxygen separation membranes. The materials have promising oxygen sorption properties and were structurally robust under varying temperatures and atmospheres. Post-TGA powder diffraction patterns revealed no structural changes after the temperature and gas treatments, demonstrating the robustness of the material. The most promising material was the La0.1Sr0.9Co1-xMnx O3-δ perovskite. The oxygen sorption properties increased with increasing Mn doping.
Abstract not provided.
Abstract not provided.
All ceramics and powder metals, including the ceramics components that Sandia uses in critical weapons components such as PZT voltage bars and current stacks, multi-layer ceramic MET's, ahmindmolybdenum & alumina cermets, and ZnO varistors, are manufactured by sintering. Sintering is a critical, possibly the most important, processing step during manufacturing of ceramics. The microstructural evolution, the macroscopic shrinkage, and shape distortions during sintering will control the engineering performance of the resulting ceramic component. Yet, modeling and prediction of sintering behavior is in its infancy, lagging far behind the other manufacturing models, such as powder synthesis and powder compaction models, and behind models that predict engineering properties and reliability. In this project, we developed a model that was capable of simulating microstructural evolution during sintering, providing constitutive equations for macroscale simulation of shrinkage and distortion during sintering. And we developed macroscale sintering simulation capability in JAS3D. The mesoscale model can simulate microstructural evolution in a complex powder compact of hundreds or even thousands of particles of arbitrary shape and size by 1. curvature-driven grain growth, 2. pore migration and coalescence by surface diffusion, 3. vacancy formation, grain boundary diffusion and annihilation. This model was validated by comparing predictions of the simulation to analytical predictions for simple geometries. The model was then used to simulate sintering in complex powder compacts. Sintering stress and materials viscous module were obtained from the simulations. These constitutive equations were then used by macroscopic simulations for simulating shrinkage and shape changes in FEM simulations. The continuum theory of sintering embodied in the constitutive description of Skorohod and Olevsky was combined with results from microstructure evolution simulations to model shrinkage and deformation during. The continuum portion is based on a finite element formulation that allows 3D components to be modeled using SNL's nonlinear large-deformation finite element code, JAS3D. This tool provides a capability to model sintering of complex three-dimensional components. The model was verified by comparing to simulations results published in the literature. The model was validated using experimental results from various laboratory experiments performed by Garino. In addition, the mesoscale simulations were used to study anisotropic shrinkage in aligned, elongated powder compacts. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. We also explored the concept of a sintering stress tensor rather than the traditional sintering stress scalar concept for the case of anisotropic shrinkage. A thermodynamic treatment of this is presented. A method to calculate the sintering stress tensor is also presented. A user-friendly code that can simulate microstructural evolution during sintering in 2D and in 3D was developed. This code can run on most UNIX platforms and has a motif-based GUI. The microstructural evolution is shown as the code is running and many of the microstructural features, such as grain size, pore size, the average grain boundary length (in 2D) and area (in 3D), etc. are measured and recorded as a function of time. The overall density as the function of time is also recorded.
Abstract not provided.
Abstract not provided.
Sintering is one of the oldest processes used by man to manufacture materials dating as far back as 12,000 BC. While it is an ancient process, it is also necessary for many modern technologies such a multilayered ceramic packages, wireless communication devices, and many others. The process consists of thermally treating a powder or compact at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by bonding together of the particles. During sintering, the individual particles bond, the pore space between particles is eliminated, the resulting component can shrinks by as much as 30 to 50% by volume, and it can distort its shape tremendously. Being able to control and predict the shrinkage and shape distortions during sintering has been the goal of much research in material science. And it has been achieved to varying degrees by many. The object of this project was to develop models that could simulate sintering at the mesoscale and at the macroscale to more accurately predict the overall shrinkage and shape distortions in engineering components. The mesoscale model simulates microstructural evolution during sintering by modeling grain growth, pore migration and coarsening, and vacancy formation, diffusion and annihilation. In addition to studying microstructure, these simulation can be used to generate the constitutive equations describing shrinkage and deformation during sintering. These constitutive equations are used by continuum finite element simulations to predict the overall shrinkage and shape distortions of a sintering crystalline powder compact. Both models will be presented. Application of these models to study sintering will be demonstrated and discussed. Finally, the limitations of these models will be reviewed.
Abstract not provided.
Abstract not provided.
The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented.
An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.
A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.