Direct Electrical Detection of Target Environmental Gases by a Zeolite and MOF Based Sensors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal-organic frameworks (MOFs) materials. Fundamental understanding of the structure-property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. Calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.
Abstract not provided.
Abstract not provided.
Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies. ACKNOWLEDGEMENTS The work at Sandia National Labs was supported by a Laboratory Directed Research and Development project. Device fabrication was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. We are grateful to many people inside and outside Sandia for their support and fruitful collaborations. This report describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Iodine detection is crucial for nuclear waste clean-up and first responder activities. For ease of use and durability of response, robust active materials that enable the direct electrical detection of I2 are needed. Herein, a large reversible electrical response is demonstrated as I2 is controllably and repeatedly adsorbed and desorbed from a series of metal-organic frameworks (MOFs) MFM-300(X), each possessing a different metal center (X = Al, Fe, In, or Sc) bridged by biphenyl-3,3′,5,5′-tetracarboxylate linkers. Impedance spectroscopy is used to evaluate how the different metal centers influence the electrical response upon cycling of I2 gas, ranging from 10× to 106× decrease in resistance upon I2 adsorption in air. This large variation in electrical response is attributed not only to the differing structural characteristics of the MOFs but also to the differing MOF morphologies and how this influences the degree of reversibility of I2 adsorption. Interestingly, MFM-300(Al) and MFM-300(In) displayed the largest changes in resistance (up to 106×) yet lost much of their adsorption capacity after five I2 adsorption cycles in air. On the other hand, MFM-300(Fe) and MFM-300(Sc) revealed more moderate changes in resistance (10-100×), maintaining most of their original adsorption capacity after five cycles. This work demonstrates how changes in MOFs can profoundly affect the magnitude and reversibility of the electrical response of sensor materials. Tuning both the intrinsic (resistivity and adsorption capacity) and extrinsic (surface area and particle morphology) properties is necessary to develop highly reversible, large signal-generating MOF materials for direct electrical readout for I2 sensing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microporous and Mesoporous Materials
Detection of radiological iodine gas after nuclear accidents or in nuclear fuel reprocessing is necessary for the safety of human life and the environment. The development of sensors for the detection of iodine benefits from the incorporation of nanoporous materials with high selectivity for I2 from common competing gases in air. Silver mordenite zeolite (Ag-MOR) is widely-used material for capture of gaseous iodine (I2). Herein, thin film zeolite coatings were applied to Pt interdigitated electrodes (IEDs) to fabricate iodine gas sensors with direct electrical readout responses. Correlations between occluded ion, exposure to iodine gas, resultant AgI nanoparticle polymorphs and location in zeolite with resultant impedance spectroscopy (IS) properties are described. Furthermore, IS is leveraged to elucidate the changes in charge conduction pathways as determined by the cation-zeolite film incorporated in the sensor. Silver mordenite reveals a significant change in impedance upon exposure to gaseous I2 at 70 °C, and the magnitude and direction of the response is dependent on whether the Ag+-mordenite is reduced (Ag0) before I2 exposure. An equivalent circuit model is developed to describe the movement of charge along the surface and through the pores of the mordenite grains. Relative changes in the impedance of these conduction pathways are related to the chemical changes from Ag+ or Ag0 to resultant AgI polymorph phase. Together, these results inform design of a compact Ag-mordenite sensor for direct electrical detection of gaseous I2.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemistry of Materials
In the past decade, basic physics, chemistry, and materials science research on topological quantum materials - and their potential use to implement reliable quantum computers - has rapidly expanded to become a major endeavor. A pivotal goal of this research has been to realize materials hosting Majorana quasiparticles, thereby making topological quantum computing a technological reality. While this goal remains elusive, recent data-mining studies, performed using topological quantum chemistry methodologies, have identified thousands of potential topological materials - some, and perhaps many, with potential for hosting Majoranas. We write this Review for advanced materials researchers who are interested in joining this expanding search, but who are not currently specialists in topology. The first half of the Review addresses, in readily understood terms, three main areas associated with topological sciences: (1) a description of topological quantum materials and how they enable quantum computing; (2) an explanation of Majorana quasiparticles, the important topologically endowed properties, and how it arises quantum mechanically; and (3) a description of the basic classes of topological materials where Majoranas might be found. The second half of the Review details selected materials systems where intense research efforts are underway to demonstrate nontrivial topological phenomena in the search for Majoranas. Specific materials reviewed include the groups II-V semiconductors (Cd3As2), the layered chalcogenides (MX2, ZrTe5), and the rare-earth pyrochlore iridates (A2Ir2O7, A = Eu, Pr). In each case, we describe crystallographic structures, bulk phase diagrams, materials synthesis methods (bulk, thin film, and/or nanowire forms), methods used to characterize topological phenomena, and potential evidence for the existence of Majorana quasiparticles.
Physical Chemistry Chemical Physics
Here, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(μ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF indicated a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1-9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1-4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.
Nanoscale Advances
Energy and cost efficient synthesis pathways are important for the production, processing, and recycling of rare earth metals necessary for a range of advanced energy and environmental applications. In this work, we present results of successful in situ liquid cell transmission electron microscopy production and imaging of rare earth element nanostructure synthesis, from aqueous salt solutions, via radiolysis due to exposure to a 200 keV electron beam. Nucleation, growth, and crystallization processes for nanostructures formed in yttrium(iii) nitrate hydrate (Y(NO3)3·4H2O), europium(iii) chloride hydrate (EuCl3·6H2O), and lanthanum(iii) chloride hydrate (LaCl3·7H2O) solutions are discussed. In situ electron diffraction analysis in a closed microfluidic configuration indicated that rare earth metal, salt, and metal oxide structures were synthesized. Real-time imaging of nanostructure formation was compared in closed cell and flow cell configurations. Notably, this work also includes the first known collection of automated crystal orientation mapping data through liquid using a microfluidic transmission electron microscope stage, which permits the deconvolution of amorphous and crystalline features (orientation and interfaces) inside the resulting nanostructures.
Abstract not provided.
This proposal is focused on the multidisciplinary, exploratory study of highly selective materials for distinguishing peaceful nuclear facilities from clandestine nuclear weapons development. In particular, we are focused on iodine fission off-gas species. This is a 1-year project; herein is the final FY1 8 report on the project. The project was divided into four Tasks: speciation, flowsheets, fission gas adsorption materials, and detection devices. We successfully addressed all four tasks and reported on them during this year's quarterly reports. This final report will serve as a summary of the accomplishments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
This Review Article focuses on the highly versatile and effective method of radiolysis for the synthesis of nanoparticles (NPs). In particular, the formation of bimetallic and alloyed nanoparticles (or nanoalloys), including both known super alloys and novel alloy NP compositions, is described. This Review Article discloses the synthesis techniques that rely on ionizing radiation sources to create metallic NPs. Then, alloy NPs formed from combinations of transition metals and noble metals with varied structures are described. Some of the advantages of radiolysis including exquisite control over the size, monodispersity, and alloying structure of NPs are discussed. Additionally, methodologies that facilitate the synthesis or deposition of NPs onto a range of supports under inert environments are described. Finally, applications of metallic NPs formed by radiolysis are summarized.
Abstract not provided.