Publications

Results 1–25 of 26
Skip to search filters

Focused ion beam sculpting curved shape cavities in crystalline and amorphous targets

Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

Adams, D.P.; Vasile, M.J.; Mayer, T.M.

This work demonstrates accurate sculpting of predetermined micron-scale, curved shapes in initially planar solids. Using a 20 keV focused Ga + ion beam, various features are sputtered including hemispheres, parabolas, and sinusoidal wave forms having dimensions from 1 to 30 μm. Ion sculpting is accomplished by varying the dose at different points within individual scans. The doses calculated per point account for the material-specific, angle-dependent sputter yield, Y(θ), the beam current, and the ion beam spatial distribution. Several target materials are sculpted using this technique. These include semiconductors that are made amorphous or disordered by the high-energy beam and metals that remain crystalline with ion exposure. For several target materials, curved feature shapes closely match desired geometries with milled depths within 5% of intended values. Deposition of sputtered material and reflection of ions from sloped surfaces are important factors in feature depth and profile evolution. Materials that are subject to severe effects of redeposition (e.g., C and Si) require additional dose in certain regions in order to achieve desired geometries. The angle-dependent sputter yields of Si, C, Au, Al, W, SiC, and Al 2O 3 are reported. This includes normal incidence values, Y(0°), and Yamamura parameters f and Σ. © 2006 American Vacuum Society.

More Details

Effects of evolving surface morphology on yield during focused ion beam milling of carbon

Applied Surface Science

Adams, D.P.; Mayer, T.M.; Vasile, M.J.; Archuleta, Kim A.

We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10 17 -10 19 ions/cm 2 ) and incidence angles (Θ = 0-80°). Carbon bombarded by 20 keV Ga + either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75°. Similar trends of decreasing yield are found for H 2 O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam. © 2005 Elsevier B.V. All rights reserved.

More Details

LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings

Mayer, T.M.; Scharf, Thomas W.; Prasad, Somuri V.; Moody, Neville R.; Goeke, Ronald S.; Dugger, Michael T.; Grubbs, Robert K.; Jungk, John M.

Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

More Details

Effects of evolving surface morphology on yield during focused ion beam milling of carbon

Proposed for publication in Applied Surface Science.

Adams, David P.; Mayer, T.M.; Archuleta, Kim A.

We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({Theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {Theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {Theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

More Details

Morphology evolution on diamond surfaces during ion sputtering

Proposed for publication in Journal of Vacuum Science and Technology A.

Mayer, T.M.; Adams, David P.; Archuleta, Kim A.

We have conducted an extensive study of the evolution of surface morphology of single crystal diamond surfaces during sputtering by 20 keV Ga{sup +} and Ga{sup +} + H{sub 2}O. We observe the formation of well-ordered ripples on the surface for angles of incidence between 40 and 70{sup o}. We have also measured sputter yields as a function of angle of incidence, and ripple wavelength and amplitude dependence on angle of incidence and ion fluence. Smooth surface morphology is observed for <40{sup o}, and a transition to a step-and-terrace structure is observed for >70{sup o}. The formation and evolution of well-ordered surface ripples is well characterized by the model of Bradley and Harper, where sputter-induced roughening is balanced by surface transport smoothing. Smoothing is consistent with an ion-induced viscous relaxation mechanism. Ripple amplitude saturates at high ion fluence, confirming the effect of nonlinear processes. Differences between Ga{sup +} and Ga{sup +} + H{sub 2}O in ripple wavelength, amplitude, and time to saturation of amplitude are consistent with the increased sputter yield observed for Ga{sup +} + H{sub 2}O. For angle of incidence <40{sup o}, an ion bombardment-induced 'atomic drift' mechanism for surface smoothing may be responsible for suppression of ripple formation. For Ga{sup +} + H{sub 2}O, we observe anomalous formation of very large amplitude and wavelength, poorly ordered surface ridges for angle of incidence near 40{sup o}. Finally, we observe that ripple initiation on smooth surfaces can take place by initial stochastic roughening followed by evolution of increasingly well-ordered ripples.

More Details

Atomic layer deposition of tungsten disulphide solid lubricant thin films

Journal of Materials Research

Scharf, T.W.; Prasad, Somuri V.; Mayer, T.M.; Goeke, Ronald S.; Dugger, Michael T.

The synthesis and characterization of crystalline tungsten disulphide (WS2) solid lubricant thin films grown by atomic layer deposition (ALD) using WF6 and H2S gas precursors was studied. A new catalytic route was established to promote nucleation and growth of WS2 films on silicon surfaces with native oxide. Scanning electron microscopy with energy dispersive spectroscopy and Raman spectroscopy were used to determine the film morphology, composition, and crystallinity. The films exhibited solid lubricating behavior with a steady-state friction coefficient of 0.04 in a dry nitrogen environment.

More Details

Focused ion beam techniques for fabricating geometrically-complex components and devices

Adams, David P.; Mayer, T.M.; Hodges, Vernon C.

We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

More Details

Adsorption kinetics of 1-alkanethiols on hydrogenated Ge(111)

Langmuir

Kosuri, Madhava R.; Cone, Roya; Li, Qiming; Han, Sang M.; Bunker, B.C.; Mayer, T.M.

We have investigated the liquid-phase self-assembly of 1-alkanethiols (HS(CH2)n-1CH3, n = 8, 16, and 18) on hydrogenated Ge(111), using attenuated total reflection Fourier transform infrared spectroscopy as well as water contact angle measurements. The infrared absorbance of C-H stretching modes of alkanethiolates on Ge, in conjunction with water contact angle measurements, demonstrates that the final packing density is a function of alkanethiol concentration in 2-propanol and its chain length. High concentration and long alkyl chain increase the steady-state surface coverage of alkanethiolates. A critical chain length exists between n = 8 and 16, above which the adsorption kinetics is comparable for all long alkyl chain 1-alkanethiols. The steady-state coverage of hexadecanethiolates, representing long-chain alkanethiolates, reaches a maximum at approximately 5.9 × 1014 hexadecanethiolates/cm2 in 1 M solution. The characteristic time constant to reach a steady state also decreases with increasing chain length. This chain length dependence is attributed to the attractive chain-to-chain interaction in long-alkyl-chain self-assembled monolayers, which reduces the desorption-to-adsorption rate ratio (kd/ka). We also report the adsorption and desorption rate constants (ka and kd) of 1-hexadecanethiol on hydrogenated Ge(111) at room temperature. The alkanethiol adsorption is a two-step process following a first-order Langmuir isotherm: (1) fast adsorption with ka = 2.4 ± 0.2 cm3/(mol s) and kd = (8.2 ± 0.5) × 10-6 s-1; (2) slow adsorption with ka = 0.8 ± 0.5 cm3/(mol s) and kd = (3 ± 2) × 10-6 s-1.

More Details

The effects of varying humidity on copper sulfide film formation

Sullivan, John P.; Sullivan, John P.; Barbour, J.C.; Missert, Nancy A.; Copeland, Robert G.; Mayer, T.M.

Detailed experiments involving extensive high resolution transmission electron microscopy (TEM) revealed significant microstructural differences between Cu sulfides formed at low and high relative humidity (RH). It was known from prior experiments that the sulfide grows linearly with time at low RH up to a sulfide thickness approaching or exceeding one micron, while the sulfide initially grows linearly with time at high RH then becomes sub-linear at a sulfide thickness less than about 0.2 microns, with the sulfidation rate eventually approaching zero. TEM measurements of the Cu2S morphology revealed that the Cu2S formed at low RH has large sized grains (75 to greater than 150 nm) that are columnar in structure with sharp, abrupt grain boundaries. In contrast, the Cu2S formed at high RH has small equiaxed grains of 20 to 50 nm in size. Importantly, the small grains formed at high RH have highly disordered grain boundaries with a high concentration of nano-voids. Two-dimensional diffusion modeling was performed to determine whether the existence of localized source terms at the Cu/Cu2S interface could be responsible for the suppression of Cu sulfidation at long times at high RH. The models indicated that the existence of static localized source terms would not predict the complete suppression of growth that was observed. Instead, the models suggest that the diffusion of Cu through Cu2S becomes restricted during Cu2S formation at high RH. The leading speculation is that the extensive voiding that exists at grain boundaries in this material greatly reduces the flux of Cu between grains, leading to a reduction in the rate of sulfide film formation. These experiments provide an approach for adding microstructural information to Cu sulfidation rate computer models. In addition to the microstructural studies, new micro-patterned test structures were developed in this LDRD to offer insight into the point defect structure of Cu2S and to permit measurement of surface reaction rates during Cu sulfidation. The surface reaction rate was measured by creating micropatterned Cu lines of widths ranging from 5 microns to 100 microns. When sulfidized, the edges of the Cu lines show greater sulfidation than the center, an effect known as microloading. Measurement of the sulfidation profile enables an estimate of the ratio of the diffusivity of H2S in the gas phase to the surface reaction rate constant, k. Our measurements indicated that the gas phase diffusivity exceeds k by more than 10, but less than 100. This is consistent with computer simulations of the sulfidation process. Other electrical test structures were developed to measure the electrical conductivity of Cu2S that forms on Cu. This information can be used to determine relative vacancy concentrations in the Cu2S layer as a function of RH. The test structures involved micropatterned Cu disks and thin films, and the initial measurements showed that the electrical approach is feasible for point defect studies in Cu2S.

More Details

Vapor-Phase Adsorption Kinetics of 1-Decene on H-Terminated Si(100)

Langmuir

Kosuri, Madhava R.; Gerung, Henry; Li, Qiming; Han, Sang M.; Bunker, B.C.; Mayer, T.M.

We have investigated in situ and in real time vapor-phase self-assembly of 1-decene on Si, using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIRS). The adsorption of 1-decene on hydrogenated Si(100) results in a decane-terminated hydrophobic surface, indicated by the sessile-drop water contact angle at 107 ± 2°. This maximum contact angle is achieved at 160 °C under 30 mTorr of vapor-phase 1-decene. The fractional surface coverage of decane, calculated from the IR absorbance of C-H stretching vibrational modes near 2900 cm-1, follows a Langmuir isotherm. The absolute surface coverage calculated from the IR absorbance saturates at 3.2 × 1014 cm-2. On the basis of this isotherm, the empirical rate constant (k2′) that governs the rate-limiting step in 1-decene adsorption on HF-treated Si(100) is (3.3 ± 0.7) × 10-2 min-1. The thickness and cant angle of the decane monolayer at the saturation coverage are calculated from angle resolved X-ray photoelectron spectroscopy (AR-XPS). The calculated thickness ranges from 8.4 to 18 Å due to the uncertainty in the attenuation lengths of C(1s) and Si(2p) photoelectrons through the decane layer. For the same uncertainty, the calculated cant angle ranges from 0 to 55°. Spectroscopic ellipsometry is independently used to approximate the film thickness at 16 Å. Monitoring the decane monolayer over a period of 50 days using AR-XPS indicates that the Si surface underneath the decane monolayer gets oxidized with time, leading to the degradation of the decane layer.

More Details

Focused ion beam milling of diamond : effects of H2O on yield, surface morphology and microstructure

Proposed for publication in the Journal of Vacuum Science and Technology B.

Adams, David P.; Adams, David P.; Vasile, Michael J.; Mayer, T.M.; Hodges, Vernon C.

The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.

More Details

Spectroscopic ellipsometry and fluorescence study of thermochromism in an ultrathin poly(diacetylene) film: reversibility and transition kinetics

Langmuir

Carpick, R.W.; Mayer, T.M.; Sasaki, Darryl Y.; Burns, A.R.

We have investigated the thermochromic transition of an ultrathin poly(diacetylene) film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate 'purple' form that exists only at elevated temperature (between 303 and 333 K), followed by an irreversible transition to the red form after annealing above 320 K. We propose that the purple form is thermally distorted blue poly-PCDA and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements, we deduce an energy barrier of 17.6 ± 1.1 kcal mol-1 between the blue and red forms.

More Details
Results 1–25 of 26
Results 1–25 of 26